scholarly journals Mesospheric gravity wave activity estimated via airglow imagery, multistatic meteor radar, and SABER data taken during the SIMONe–2018 campaign

2020 ◽  
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal scale gravity waves from datasets composed of images from multiple mesospheric nightglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER satellite in orbits near Kühlungsborn, northern Germany (54.1° N, 11.8° E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We obtain intrinsic parameters of small and large horizontal scale gravity waves and characterize their impact in the mesosphere region via momentum flux and flux divergence estimations. We have verified that a small percent of the detected wave events are responsible for most of the momentum flux measured during the campaign from oscillations seen in the airglow brightness and MSMR winds. From the analysis of small-scale gravity waves in airglow images, we have found wave momentum fluxes ranging from 0.38 to 24.74 m2/s2 (0.88 ± 0.73 m2/s2 on average), with a total of 586.96 m2/s2 (sum over all 362 detected waves). However, small horizontal scale waves with flux > 3 m2/s2 (11 % of the events) transport 50 % of the total measured flux. Likewise, wave events having flux > 10 m2/s2 (2 % of the events) transport 20 % of the total flux. The examination of two large-scale waves seen simultaneously in airglow keograms and MSMR winds revealed relative amplitudes > 35 %, which translates into momentum fluxes of 21.2–29.6 m/s. In terms of gravity wave–mean flow interactions, these high momentum flux waves could cause decelerations of 22–41 m/s/day (small-scale waves) and 38–43 m/s/day (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region. The dominant large-scale waves might be the result of secondary gravity excited from imbalanced flow in the stratosphere caused by primary wave breaking.

2021 ◽  
Vol 21 (17) ◽  
pp. 13631-13654
Author(s):  
Fabio Vargas ◽  
Jorge L. Chau ◽  
Harikrishnan Charuvil Asokan ◽  
Michael Gerding

Abstract. We describe in this study the analysis of small and large horizontal-scale gravity waves from datasets composed of images from multiple mesospheric airglow emissions as well as multistatic specular meteor radar (MSMR) winds collected in early November 2018, during the SIMONe–2018 (Spread-spectrum Interferometric Multi-static meteor radar Observing Network) campaign. These ground-based measurements are supported by temperature and neutral density profiles from TIMED/SABER (Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry) satellite in orbits near Kühlungsborn, northern Germany (54.1∘ N, 11.8∘ E). The scientific goals here include the characterization of gravity waves and their interaction with the mean flow in the mesosphere and lower thermosphere and their relationship to dynamical conditions in the lower and upper atmosphere. We have obtained intrinsic parameters of small- and large-scale gravity waves and characterized their impact in the mesosphere via momentum flux (FM) and momentum flux divergence (FD) estimations. We have verified that a small percentage of the detected wave events is responsible for most of FM measured during the campaign from oscillations seen in the airglow brightness and MSMR winds taken over 45 h during four nights of clear-sky observations. From the analysis of small-scale gravity waves (λh < 725 km) seen in airglow images, we have found FM ranging from 0.04–24.74 m2 s−2 (1.62 ± 2.70 m2 s−2 on average). However, small-scale waves with FM > 3 m2 s−2 (11 % of the events) transport 50 % of the total measured FM. Likewise, wave events of FM > 10 m2 s−2 (2 % of the events) transport 20 % of the total. The examination of large-scale waves (λh > 725 km) seen simultaneously in airglow keograms and MSMR winds revealed amplitudes > 35 %, which translates into FM = 21.2–29.6 m2 s−2. In terms of gravity-wave–mean-flow interactions, these large FM waves could cause decelerations of FD = 22–41 m s−1 d−1 (small-scale waves) and FD = 38–43 m s−1 d−1 (large-scale waves) if breaking or dissipating within short distances in the mesosphere and lower thermosphere region.


Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1253
Author(s):  
Caixia Tian ◽  
Xiong Hu ◽  
Yurong Liu ◽  
Xuan Cheng ◽  
Zhaoai Yan ◽  
...  

Meteor radar data collected over Langfang, China (39.4° N, 116.7° E) were used to estimate the momentum flux of short-period (less than 2 h) gravity waves (GWs) in the mesosphere and lower thermosphere (MLT), using the Hocking (2005) analysis technique. Seasonal variations in GW momentum flux exhibited annual oscillation (AO), semiannual oscillation (SAO), and quasi-4-month oscillation. Quantitative estimations of GW forcing toward the mean zonal flow were provided using the determined GW momentum flux. The mean flow acceleration estimated from the divergence of this flux was compared with the observed acceleration of zonal winds displaying SAO and quasi-4-month oscillations. These comparisons were used to analyze the contribution of zonal momentum fluxes of SAO and quasi-4-month oscillations to zonal winds. The estimated acceleration from high-frequency GWs was in the same direction as the observed acceleration of zonal winds for quasi-4-month oscillation winds, with GWs contributing more than 69%. The estimated acceleration due to Coriolis forces to the zonal wind was studied; the findings were opposite to the estimated acceleration of high-frequency GWs for quasi-4-month oscillation winds. The significance of this study lies in estimating and quantifying the contribution of the GW momentum fluxes to zonal winds with quasi-4-month periods over mid-latitude regions for the first time.


2021 ◽  
Author(s):  
Harikrishnan Charuvil Asokan ◽  
Jorge L Chau ◽  
Raffaele Marino ◽  
Juha Vierinen ◽  
Fabio Vargas ◽  
...  

Abstract In recent years, multistatic specular meteor radars (SMRs) have been introduced to study the Mesosphere and Lower Thermosphere (MLT) dynamics with increasing spatial and temporal resolution. In this paper, frequency spectra of MLT horizontal winds are explored through observations from a campaign using the SIMONe (Spread-spectrum Interferometric Multistatic meteor radar Observing Network) approach conducted in northern Germany in 2018 (hereafter SIMONe 2018). The seven-day SIMONe 2018 comprised of fourteen multistatic SMR links and allows to build a substantial database of specular meteor trail events, collecting more than one hundred thousand detections per day within a geographic area of $\sim $ 500 km $\times$ 500 km. We have implemented two methods to obtain the frequency spectra of the horizontal wind components: (1) Mean Wind Estimation (MWE) and (2) Wind field Correlation Function Inversion (WCFI), which utilizes the mean and the covariances of the line of sight velocities, respectively. Monte Carlo simulations of a gravity wave spectral model were implemented to validate and compare both methods. The simulation analyses suggest that the WCFI helps to capture the energy of smaller-scale wind fluctuations than those capture with MWE. Characterization of the spectral slope of the horizontal wind at different MLT altitudes has been conducted on the SIMONe 2018, and it provides evidence that gravity waves with periods smaller than seven hours and greater than two hours dominate with horizontal structures significantly larger than 500 km. These waves might be associated with secondary gravity waves during this observational campaign. In the future, these analyses can be extended to understand the significance of small-scale fluctuations in the MLT, which were not possible with conventional MWE methods.


2020 ◽  
Author(s):  
Harikrishnan Charuvil Asokan ◽  
Jorge L. Chau ◽  
Raffaele Marino ◽  
Juha Vierinen ◽  
Fabio Vargas ◽  
...  

Abstract. In recent years, multistatic specular meteor radars (SMRs) have been introduced to study the Mesosphere and Lower Thermosphere (MLT) dynamics. In this paper, the statistics of mesoscale MLT power spectra are explored through observations from a campaign using the SIMONe (Spread-spectrum Interferometric Multistatic meteor radar Observing Network) approach conducted in northern Germany in 2018 (hereafter SIMONe 2018). The seven-day SIMONe 2018 comprised of fourteen multistatic SMR links and allows to build a substantial database of specular meteor trail events, collecting more than one hundred thousand detections per day within a geographic area of ~ 500 km x 500 km. The two methods we propose to obtain the power spectra in frequency range are (1) Wind field Correlation Function Inversion (WCFI), which utilizes two-point correlations of specular meteor observations, and (2) Mean Wind Estimation (MWE), which determines the MLT winds and gradients from specular meteor observations. Monte Carlo simulations of a gravity wave spectral model were implemented to validate and compare both methods. The simulation analyses suggest that the WCFI is the viable option among them to study the second-order statistics of the MLT winds that helps to capture the energy of small-scale wind fluctuations. Characterization of the spectral slope at different MLT altitudes has been conducted on the SIMONe 2018, and it provides evidence that gravity waves with periods smaller than seven hours and greater than two hours are dominated by waves with horizontal wavelength significantly larger than 500 km, which might be associated to secondary gravity waves. We believe that the presented methods can help us bridge the observational gap between large and small-scale mesospheric wind fluctuations and also improve the capabilities of SMRs.


2009 ◽  
Vol 27 (6) ◽  
pp. 2361-2369 ◽  
Author(s):  
F. Vargas ◽  
D. Gobbi ◽  
H. Takahashi ◽  
L. M. Lima

Abstract. We show in this report the momentum flux content input in the mesosphere due to relatively fast and small scale gravity waves (GWs) observed through OH airglow images. The acquisition of OH NIR images was carried out in Brazil at Brasilia (14.8° S, 47.6° W) and Cariri (7.4° S, 36.5° W) from September 2005 to November 2005 during the SpreadFEx Campaign. Horizontal wind information from meteor radar was available in Cariri only. Our findings showed strong wave activity in both sites, mainly in Cariri. High wave directionality was also observed in both sites during SpreadFEx, which have been observed by other investigators using different analysis' techniques and different types of data during the campaign. We discuss also the possibility of plasma bubble seeding by gravity waves presenting spatial and temporal scales estimated with our novel analysis technique during the SpreadFEx campaign.


2005 ◽  
Vol 5 (6) ◽  
pp. 11377-11412
Author(s):  
L. Wang ◽  
M. J. Alexander ◽  
T. P. Bui ◽  
M. J. Mahoney

Abstract. ER-2 MMS and MTP wind and temperature measurements during the CRYSTAL-FACE campaign in July 2002 were analyzed to retrieve information on small scale gravity waves (GWs) at aircraft's flight level. For a given flight segment, the S-transform was used to search for and identify small horizontal scale GW events, and to estimate the apparent horizontal wavelengths of the events. The horizontal propagation directions of the events were determined using the Stokes parameters method combined with the cross S-transform analysis. The MTP temperature gradient method was used to determine the vertical wavelengths of the events. GW momentum fluxes were calculated from the cross S-transform. Other wave parameters such as intrinsic frequencies were calculated using the GW dispersion relation. More than 100 GW events were identified. They were generally short horizontal scale and high frequency waves with λz of ~5 km and λh generally shorter than 20 km. Their intrinsic propagation directions were predominantly toward the east, whereas their ground-based propagation directions were primarily toward the west. Among the events, ~20% of them had very short horizontal wavelength (<10 km), very high intrinsic frequency (ω/N≥0.8), and relatively small momentum fluxes, and thus they were likely trapped in the lower stratosphere. The averaged magnitude of vertical flux of horizontal momentum was ~0.026 kg m−1 s−2, and the maximum magnitude was ~0.13 kg m−1 s−2. Using the estimated GW parameters and the background winds and stabilities from the NCAR/NCEP reanalysis data, we were able to trace the sources of the events using a simple reverse ray-tracing. More than 70% of the events were traced back to convective sources in the troposphere, and the sources were generally located upstream to the events. Finally, a probability density function of GW cooling rates was obtained in this study, which may be used in cirrus cloud models.


2015 ◽  
Vol 782 ◽  
pp. 144-177 ◽  
Author(s):  
Anthony Randriamampianina ◽  
Emilia Crespo del Arco

Direct numerical simulations based on high-resolution pseudospectral methods are carried out for detailed investigation into the instabilities arising in a differentially heated, rotating annulus, the baroclinic cavity. Following previous works using air (Randriamampianina et al., J. Fluid Mech., vol. 561, 2006, pp. 359–389), a liquid defined by Prandtl number $Pr=16$ is considered in order to better understand, via the Prandtl number, the effects of fluid properties on the onset of gravity waves. The computations are particularly aimed at identifying and characterizing the spontaneously emitted small-scale fluctuations occurring simultaneously with the baroclinic waves. These features have been observed as soon as the baroclinic instability sets in. A three-term decomposition is introduced to isolate the fluctuation field from the large-scale baroclinic waves and the time-averaged mean flow. Even though these fluctuations are found to propagate as packets, they remain attached to the background baroclinic waves, locally triggering spatio-temporal chaos, a behaviour not observed with the air-filled cavity. The properties of these features are analysed and discussed in the context of linear theory. Based on the Richardson number criterion, the characteristics of the generation mechanism are consistent with a localized instability of the shear zonal flow, invoking resonant over-reflection.


2000 ◽  
Vol 407 ◽  
pp. 235-263 ◽  
Author(s):  
OLIVER BÜHLER

Theoretical and numerical results are presented on the transport of vorticity (or potential vorticity) due to dissipating gravity waves in a shallow-water system with background rotation and bottom topography. The results are obtained under the assumption that the flow can be decomposed into small-scale gravity waves and a large-scale mean flow. The particle-following formalism of ‘generalized Lagrangian-mean’ theory is then used to derive an ‘effective mean force’ that captures the vorticity transport due to the dissipating waves. This can be achieved without neglecting other, non-dissipative, effects which is an important practical consideration. It is then shown that the effective mean force obeys the so-called ‘pseudomomentum rule’, i.e. the force is approximately equal to minus the local dissipation rate of the wave's pseudomomentum. However, it is also shown that this holds only if the underlying dissipation mechanism is momentum-conserving. This requirement has important implications for numerical simulations, and these are discussed.The novelty of the results presented here is that they have been derived within a uniform theoretical framework, that they are not restricted to small wave amplitude, ray-tracing or JWKB-type approximations, and that they also include wave dissipation by breaking, or shock formation. The theory is tested carefully against shock-capturing nonlinear numerical simulations, which includes the detailed study of a wavetrain subject to slowly varying bottom topography. The theory is also cross-checked in the appropriate asymptotic limit against recently formulated weakly nonlinear theories. In addition to the general finite-amplitude theory, detailed small-amplitude expressions for the main results are provided in which the explicit appearance of Lagrangian fields can be avoided. The motivation for this work stems partly from an on-going study of high-altitude breaking of internal gravity waves in the atmosphere, and some preliminary remarks on atmospheric applications and on three-dimensional stratified versions of these results are given.


Sign in / Sign up

Export Citation Format

Share Document