scholarly journals Performance evaluation results of evolutionary clustering algorithm star for clustering heterogeneous datasets

Author(s):  
Bryar A.Hassan ◽  
Tarik A.Rashid ◽  
Seyedali Mirjalili

Abstract This article presents the data used to evaluate the performance of evolutionary clustering algorithm star (ECA*) compared to five traditional and modern clustering algorithms. Two experimental methods are employed to examine the performance of ECA* against genetic algorithm for clustering++ (GENCLUST++), learning vector quantisation (LVQ), expectation maximisation (EM), K-means++ (KM++) and K-means (KM). These algorithms are applied to 32 heterogenous and multi-featured datasets to determine which one performs well on the three tests. For one, ther paper examines the efficiency of ECA* in contradiction of its corresponding algorithms using clustering evaluation measures. These validation criteria are objective function and cluster quality measures. For another, it suggests a performance rating framework to measurethe the performance sensitivity of these algorithms on varos dataset features (cluster dimensionality, number of clusters, cluster overlap, cluster shape and cluster structure). The contributions of these experiments are two-folds: (i) ECA* exceeds its counterpart aloriths in ability to find out the right cluster number; (ii) ECA* is less sensitive towards dataset features compared to its competitive techniques. Nonetheless, the results of the experiments performed demonstrate some limitations in the ECA*: (i) ECA* is not fully applied based on the premise that no prior knowledge exists; (ii) Adapting and utilising ECA* on several real applications has not been achieved yet.

Author(s):  
Mohana Priya K ◽  
Pooja Ragavi S ◽  
Krishna Priya G

Clustering is the process of grouping objects into subsets that have meaning in the context of a particular problem. It does not rely on predefined classes. It is referred to as an unsupervised learning method because no information is provided about the "right answer" for any of the objects. Many clustering algorithms have been proposed and are used based on different applications. Sentence clustering is one of best clustering technique. Hierarchical Clustering Algorithm is applied for multiple levels for accuracy. For tagging purpose POS tagger, porter stemmer is used. WordNet dictionary is utilized for determining the similarity by invoking the Jiang Conrath and Cosine similarity measure. Grouping is performed with respect to the highest similarity measure value with a mean threshold. This paper incorporates many parameters for finding similarity between words. In order to identify the disambiguated words, the sense identification is performed for the adjectives and comparison is performed. semcor and machine learning datasets are employed. On comparing with previous results for WSD, our work has improvised a lot which gives a percentage of 91.2%


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Baicheng Lyu ◽  
Wenhua Wu ◽  
Zhiqiang Hu

AbstractWith the widely application of cluster analysis, the number of clusters is gradually increasing, as is the difficulty in selecting the judgment indicators of cluster numbers. Also, small clusters are crucial to discovering the extreme characteristics of data samples, but current clustering algorithms focus mainly on analyzing large clusters. In this paper, a bidirectional clustering algorithm based on local density (BCALoD) is proposed. BCALoD establishes the connection between data points based on local density, can automatically determine the number of clusters, is more sensitive to small clusters, and can reduce the adjusted parameters to a minimum. On the basis of the robustness of cluster number to noise, a denoising method suitable for BCALoD is proposed. Different cutoff distance and cutoff density are assigned to each data cluster, which results in improved clustering performance. Clustering ability of BCALoD is verified by randomly generated datasets and city light satellite images.


Author(s):  
LNC. Prakash K ◽  
G. Surya Narayana ◽  
Mohd Dilshad Ansari ◽  
Vinit Kumar Gunjan

Clustering algorithms are most probably and widely used analysis method for grouping agricultural data with high similarity. For example, one of the most widely used approaches in previous study is K-means, which is simpler, more versatile, and easier to understand and formulate. The only disadvantage of the K-means algorithm has always been that the predetermined set of cluster centres must be prepared ahead of time and provided as feedback. This paper addresses the issue of estimating cluster random centres for data segmentation and proposes a new method for locating appropriate random centres based on the frequency of attribute values. As a consequence of calculating cluster random centres, the number of iterations required to achieve optimum clusters in K-means will be reduced, as will the time required to shape the final clusters. The experimental findings show that our approach is efficient at estimating the right random cluster centres that indicate a fair separation of objects in the given database. The technique observation and comparative test results showed that the new strategy does not use present manual cluster centres, is more efficient in determining the original cluster centres, and therefore more successful in terms of time to converge the actual clusters especially in agricultural data bases.


2021 ◽  
Author(s):  
Congming Shi ◽  
Bingtao Wei ◽  
Shoulin Wei ◽  
Wen Wang ◽  
Hai Liu ◽  
...  

Abstract Clustering, a traditional machine learning method, plays a significant role in data analysis. Most clustering algorithms depend on a predetermined exact number of clusters, whereas, in practice, clusters are usually unpredictable. Although the Elbow method is one of the most commonly used methods to discriminate the optimal cluster number, the discriminant of the number of clusters depends on the manual identification of the elbow points on the visualization curve. Thus, experienced analysts cannot clearly identify the elbow point from the plotted curve when the plotted curve is fairly smooth. To solve this problem, a new elbow point discriminant method is proposed to yield a statistical metric that estimates an optimal cluster number when clustering on a dataset. First, the average degree of distortion obtained by the Elbow method is normalized to the range of 0 to 10. Second, the normalized results are used to calculate the cosine of intersection angles between elbow points. Third, this calculated cosine of intersection angles and the arccosine theorem are used to compute the intersection angles between elbow points. Finally, the index of the above computed minimal intersection angles between elbow points is used as the estimated potential optimal cluster number. The experimental results based on simulated datasets and a well-known public dataset (Iris Dataset) demonstrated that the estimated optimal cluster number obtained by our newly proposed method is better than the widely used Silhouette method.


2021 ◽  
Author(s):  
Christian Nordahl ◽  
Veselka Boeva ◽  
Håkan Grahn ◽  
Marie Persson Netz

AbstractData has become an integral part of our society in the past years, arriving faster and in larger quantities than before. Traditional clustering algorithms rely on the availability of entire datasets to model them correctly and efficiently. Such requirements are not possible in the data stream clustering scenario, where data arrives and needs to be analyzed continuously. This paper proposes a novel evolutionary clustering algorithm, entitled EvolveCluster, capable of modeling evolving data streams. We compare EvolveCluster against two other evolutionary clustering algorithms, PivotBiCluster and Split-Merge Evolutionary Clustering, by conducting experiments on three different datasets. Furthermore, we perform additional experiments on EvolveCluster to further evaluate its capabilities on clustering evolving data streams. Our results show that EvolveCluster manages to capture evolving data stream behaviors and adapts accordingly.


2017 ◽  
Author(s):  
João C. Marques ◽  
Michael B. Orger

AbstractHow to partition a data set into a set of distinct clusters is a ubiquitous and challenging problem. The fact that data varies widely in features such as cluster shape, cluster number, density distribution, background noise, outliers and degree of overlap, makes it difficult to find a single algorithm that can be broadly applied. One recent method, clusterdp, based on search of density peaks, can be applied successfully to cluster many kinds of data, but it is not fully automatic, and fails on some simple data distributions. We propose an alternative approach, clusterdv, which estimates density dips between points, and allows robust determination of cluster number and distribution across a wide range of data, without any manual parameter adjustment. We show that this method is able to solve a range of synthetic and experimental data sets, where the underlying structure is known, and identifies consistent and meaningful clusters in new behavioral data.Author summarIt is common that natural phenomena produce groupings, or clusters, in data, that can reveal the underlying processes. However, the form of these clusters can vary arbitrarily, making it challenging to find a single algorithm that identifies their structure correctly, without prior knowledge of the number of groupings or their distribution. We describe a simple clustering algorithm that is fully automatic and is able to correctly identify the number and shape of groupings in data of many types. We expect this algorithm to be useful in finding unknown natural phenomena present in data from a wide range of scientific fields.


2021 ◽  
Author(s):  
BAICHENG LV ◽  
WENHUA WU ◽  
ZHIQIANG HU

Abstract With the widely application of cluster analysis, the number of clusters is gradually increasing, as is the difficulty in selecting the judgment indicators of cluster numbers. Also, small clusters are crucial to discovering the extreme characteristics of data samples, but current clustering algorithms focus mainly on analyzing large clusters. In this paper, a bidirectional clustering algorithm based on local density (BCALoD) is proposed. BCALoD establishes the connection between data points based on local density, can automatically determine the number of clusters, is more sensitive to small clusters, and can reduce the adjusted parameters to a minimum. On the basis of the robustness of cluster number to noise, a denoising method suitable for BCALoD is proposed. Different cutoff distance and cutoff density are assigned to each data cluster, which results in improved clustering performance. Clustering ability of BCALoD is verified by randomly generated datasets and city light satellite images.


Author(s):  
Yasunori Endo ◽  
◽  
Arisa Taniguchi ◽  
Yukihiro Hamasuna ◽  
◽  
...  

Clustering is an unsupervised classification technique for data analysis. In general, each datum in real space is transformed into a point in a pattern space to apply clustering methods. Data cannot often be represented by a point, however, because of its uncertainty, e.g., measurement error margin and missing values in data. In this paper, we will introduce quadratic penalty-vector regularization to handle such uncertain data using Hard c-Means (HCM), which is one of the most typical clustering algorithms. We first propose a new clustering algorithm called hard c-means using quadratic penalty-vector regularization for uncertain data (HCMP). Second, we propose sequential extraction hard c-means using quadratic penalty-vector regularization (SHCMP) to handle datasets whose cluster number is unknown. Furthermore, we verify the effectiveness of our proposed algorithms through numerical examples.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Chao Tong ◽  
Jianwei Niu ◽  
Bin Dai ◽  
Zhongyu Xie

In complex networks, cluster structure, identified by the heterogeneity of nodes, has become a common and important topological property. Network clustering methods are thus significant for the study of complex networks. Currently, many typical clustering algorithms have some weakness like inaccuracy and slow convergence. In this paper, we propose a clustering algorithm by calculating the core influence of nodes. The clustering process is a simulation of the process of cluster formation in sociology. The algorithm detects the nodes with core influence through their betweenness centrality, and builds the cluster’s core structure by discriminant functions. Next, the algorithm gets the final cluster structure after clustering the rest of the nodes in the network by optimizing method. Experiments on different datasets show that the clustering accuracy of this algorithm is superior to the classical clustering algorithm (Fast-Newman algorithm). It clusters faster and plays a positive role in revealing the real cluster structure of complex networks precisely.


2021 ◽  
Vol 11 (4) ◽  
pp. 319-330
Author(s):  
Artur Starczewski ◽  
Magdalena M. Scherer ◽  
Wojciech Książek ◽  
Maciej Dębski ◽  
Lipo Wang

Abstract Data clustering is an important method used to discover naturally occurring structures in datasets. One of the most popular approaches is the grid-based concept of clustering algorithms. This kind of method is characterized by a fast processing time and it can also discover clusters of arbitrary shapes in datasets. These properties allow these methods to be used in many different applications. Researchers have created many versions of the clustering method using the grid-based approach. However, the key issue is the right choice of the number of grid cells. This paper proposes a novel grid-based algorithm which uses a method for an automatic determining of the number of grid cells. This method is based on the kdist function which computes the distance between each element of a dataset and its kth nearest neighbor. Experimental results have been obtained for several different datasets and they confirm a very good performance of the newly proposed method.


Sign in / Sign up

Export Citation Format

Share Document