scholarly journals A Stepwise Laboratory Manual for the Dissection and Illustration of Major Limbic Structures. Evidence from the Klingler’s Technique.

Author(s):  
Spyridon Komaitis ◽  
Theodosis Kalamatianos ◽  
Evangelos Drosos ◽  
Aristotelis Kalyvas ◽  
Maria Piagkou ◽  
...  

Abstract OBJECTIVE: To provide an educational, comprehensive, systematic and stepwise manual for the dissection and illustration of major limbic structures since there is a gap in the pertinent literature. Further, we aim to offer a thorough yet simplified roadmap for laboratory and intraoperative dissections.METHODS: Twenty (20) normal adult, formalin-fixed cerebral hemispheres were studied through the fiber dissection technique and under the microscope. Stepwise and in tandem medial to lateral and lateral to medial dissections were performed in all specimens aiming to reveal the morphology and spatial relationships of major limbic and paralimbic areas RESULTS: Twelve (12) consecutive, discrete and easily reproducible laboratory anatomical steps are systematically described to reveal the intricate anatomy of the structures of the limbic system.CONCLUSION: Surgical approaches for lesions or functional resections in and around limbic areas pose a challenging task for the neurosurgeon. By employing the fiber dissection technique, we were able to provide a stepwise and thorough laboratory guide for the gradual dissection and better comprehension of the morphology and spatial relationships of this specific system. Anatomical manuals like the present study raise interest and enrich anatomical knowledge on complex cerebral areas with the overarching goal to inform surgical practice.

Neurosurgery ◽  
2004 ◽  
Vol 55 (5) ◽  
pp. 1174-1184 ◽  
Author(s):  
Diedrik Peuskens ◽  
Johannes van Loon ◽  
Frank Van Calenbergh ◽  
Raymond van den Bergh ◽  
Jan Goffin ◽  
...  

Abstract OBJECTIVE: The white matter structure of the anterior temporal lobe and the frontotemporal region is complex and not well appreciated from the available neurosurgical literature. The fiber dissection method is an excellent means of attaining a thorough knowledge of the three-dimensional structure of the white matter tracts. This study was performed to demonstrate the usefulness of the dissection technique in understanding the white matter anatomy and the effects of current surgical approaches on the subcortical structure of the region. METHODS: Seventeen brain specimens obtained at routine autopsy were dissected by use of Klingler's fiber dissection technique after preparation by fixation and freezing. The dissections were performed with an operating microscope and followed a stepwise pattern of progressive white matter dissection. RESULTS: The dissection is described in an orderly fashion showing the white matter tracts of the anterior temporal lobe and the frontotemporal region. An insight is gained into the three-dimensional course of the anterior loop of the optic radiation, the temporal stem, the anterior commissure, and the ansa peduncularis. CONCLUSION: The anterior temporal lobe and the frontotemporal region contain several important white matter tracts that can be uniquely understood by performing a white matter dissection of the region. Surgical procedures on the anterior temporal lobe differ substantially as to their repercussions on the subcortical white matter tract anatomy, as shown by the findings in this study.


2015 ◽  
Vol 11 (2) ◽  
pp. 274-305 ◽  
Author(s):  
Kaan Yagmurlu ◽  
Alexander L Vlasak ◽  
Albert L Rhoton

Abstract BACKGROUND The fiber tracts of the cerebrum may be a more important determinant of resection limits than the cortex. Better knowledge of the 3-dimensional (3-D) anatomic organization of the fiber pathways is important in planning safe and accurate surgery for lesions within the cerebrum. OBJECTIVE To examine the topographic anatomy of fiber tracts and subcortical gray matter of the human cerebrum and their relationships with consistent cortical, ventricular, and nuclear landmarks. METHODS Twenty-five formalin-fixed human brains and 4 whole cadaveric heads were examined by fiber dissection technique and ×6 to ×40 magnification. The fiber tracts and central core structures, including the insula and basal ganglia, were examined and their relationships captured in 3-D photography. The depth between the surface of the cortical gyri and selected fiber tracts was measured. RESULTS The topographic relationships of the important association, projection, and commissural fasciculi within the cerebrum and superficial cortical landmarks were identified. Important landmarks with consistent relationships to the fiber tracts were the cortical gyri and sulci, limiting sulci of the insula, nuclear masses in the central core, and lateral ventricles. The fiber tracts were also organized in a consistent pattern in relation to each other. The anatomic findings are briefly compared with functional data from clinicoradiological analysis and intraoperative stimulation of fiber tracts. CONCLUSION An understanding of the 3-D anatomic organization of the fiber tracts of the brain is essential in planning safe and accurate cerebral surgery.


2006 ◽  
Vol 105 (2) ◽  
pp. 294-300 ◽  
Author(s):  
Johann Peltier ◽  
Nadine Travers ◽  
Christophe Destrieux ◽  
Stéphane Velut

Object In this study, the authors used a fiber-dissection technique to describe the optic radiation. They focused on the morphological characteristics (length and breadth) of this structure, its course, and its relationships with neighboring fasciculi and the lateral ventricle. Methods The authors dissected 10 previously frozen, formalin-fixed human brains with the aid of an operating microscope by following the fiber dissection technique described by Klingler in 1960. Lateral, inferior, and medial approaches were made. The optic radiation, also known as the Gratiolet radiation, extended from the lateral geniculate body to the calcarine fissure. The average distance from the tip of the anterior Meyer loop to the calcarine sulcus was 105 mm (range 95–114 mm). The breadth of the optic radiations, one on each side of the brain, averaged 17 mm at the level of the inferior horn (range 15–18 mm). This tract could be divided into three main segments: the anterior or Meyer loop, the body, and the end of the optic radiation. Adjacent anatomical structures included: laterally, the inferior longitudinal fasciculi; medially, the tapetum of the corpus callosum; and the ependyma of the inferior horn of the lateral ventricle. Conclusions Various practical surgical approaches are discussed. The knowledge gained by studying this particular anatomy will help prevent injury to the optic radiations during neurosurgery.


2017 ◽  
Vol 126 (3) ◽  
pp. 945-971 ◽  
Author(s):  
Abuzer Güngör ◽  
Serhat Baydin ◽  
Erik H. Middlebrooks ◽  
Necmettin Tanriover ◽  
Cihan Isler ◽  
...  

OBJECTIVE The relationship of the white matter tracts to the lateral ventricles is important when planning surgical approaches to the ventricles and in understanding the symptoms of hydrocephalus. The authors' aim was to explore the relationship of the white matter tracts of the cerebrum to the lateral ventricles using fiber dissection technique and MR tractography and to discuss these findings in relation to approaches to ventricular lesions. METHODS Forty adult human formalin-fixed cadaveric hemispheres (20 brains) and 3 whole heads were examined using fiber dissection technique. The dissections were performed from lateral to medial, medial to lateral, superior to inferior, and inferior to superior. MR tractography showing the lateral ventricles aided in the understanding of the 3D relationships of the white matter tracts with the lateral ventricles. RESULTS The relationship between the lateral ventricles and the superior longitudinal I, II, and III, arcuate, vertical occipital, middle longitudinal, inferior longitudinal, inferior frontooccipital, uncinate, sledge runner, and lingular amygdaloidal fasciculi; and the anterior commissure fibers, optic radiations, internal capsule, corona radiata, thalamic radiations, cingulum, corpus callosum, fornix, caudate nucleus, thalamus, stria terminalis, and stria medullaris thalami were defined anatomically and radiologically. These fibers and structures have a consistent relationship to the lateral ventricles. CONCLUSIONS Knowledge of the relationship of the white matter tracts of the cerebrum to the lateral ventricles should aid in planning more accurate surgery for lesions within the lateral ventricles.


2021 ◽  
pp. 1-13
Author(s):  
Spyridon Komaitis ◽  
Christos Koutsarnakis ◽  
Evgenia Lani ◽  
Theodosis Kalamatianos ◽  
Evangelos Drosos ◽  
...  

OBJECTIVEThe authors sought to investigate the very existence and map the topography, morphology, and axonal connectivity of a thus far ill-defined subcortical pathway known as the fronto-caudate tract (FCT) since there is a paucity of direct structural evidence regarding this pathway in the relevant literature.METHODSTwenty normal adult cadaveric formalin-fixed cerebral hemispheres (10 left and 10 right) were explored through the fiber microdissection technique. Lateral to medial and medial to lateral dissections were carried out in a tandem manner in all hemispheres. Attention was focused on the prefrontal area and central core since previous diffusion tensor imaging studies have recorded the tract to reside in this territory.RESULTSIn all cases, the authors readily identified the FCT as a fan-shaped pathway lying in the most medial layer of the corona radiata and traveling across the subependymal plane before terminating on the superolateral margin of the head and anterior part of the body of the caudate nucleus. The FCT could be adequately differentiated from adjacent fiber tracts and was consistently recorded to terminate in Brodmann areas 8, 9, 10, and 11 (anterior pre–supplementary motor area and the dorsolateral, frontopolar, and fronto-orbital prefrontal cortices). The authors were also able to divide the tract into a ventral and a dorsal segment according to the respective topography and connectivity observed. Hemispheric asymmetries were not observed, but instead the authors disclosed asymmetry within the FCT, with the ventral segment always being thicker and bulkier than the dorsal one.CONCLUSIONSBy using the fiber microdissection technique, the authors provide sound structural evidence on the topography, morphology, and connectional anatomy of the FCT as a distinct part of a wider frontostriatal circuitry. The findings are in line with the tract’s putative functional implications in high-order motor and behavioral processes and can potentially inform current surgical practice in the fields of neuro-oncology and functional neurosurgery.


2011 ◽  
Vol 114 (2) ◽  
pp. 463-469 ◽  
Author(s):  
Chan-Young Choi ◽  
Seong-Rok Han ◽  
Gi-Taek Yee ◽  
Chae-Heuck Lee

Object The purpose of this study was to understand 3D relationships of white matter fibers and subcortical areas of gray matter in the central core. Methods The lateral and medial aspects of 4 cerebral hemispheres were dissected, applying the fiber dissection technique under the microscope. Results The central core between the insula and midline includes the extreme, external, and internal capsules; claustrum; putamen; globus pallidus; caudate nucleus; amygdala; diencephalon; substantia innominata; fornix; anterior commissure; mammillothalamic tract; fasciculus retroflexus; thalamic peduncles, including optic and auditory radiations; ansa peduncularis; thalamic fasciculus; and lenticular fasciculus. It is attached to the remainder of the cerebral hemisphere by the cerebral isthmus, which is composed of white matter fibers located between the dorsolateral margin of the caudate nucleus and the full circumference of the circular sulcus of insula. The rostral fibers of the corpus callosum are included in the frontal portion of the cerebral isthmus. Conclusions It is very useful for neurosurgeons to facilitate the understanding of spatial relationships and pertinent surgical approaches in and around the central core with a highly complex anatomy by using fiber dissection.


2015 ◽  
Vol 122 (6) ◽  
pp. 1253-1262 ◽  
Author(s):  
Cristina Goga ◽  
Uğur Türe

OBJECT The goal in this study was to explore and further refine comprehension of the anatomical features of the temporal loop, known as Meyer's loop. METHODS The lateral and inferior aspects of 20 previously frozen, formalin-fixed human brains were dissected under the operating microscope by using fiber microdissection. RESULTS A loop of the fibers in the anterior temporal region was clearly demonstrated in all dissections. This temporal loop, or Meyer's loop, is commonly known as the anterior portion of the optic radiation. Fiber microdissection in this study, however, revealed that various projection fibers that emerge from the sublentiform portion of the internal capsule (IC-SL), which are the temporopontine fibers, occipitopontine fibers, and the posterior thalamic peduncle (which includes the optic radiation), participate in this temporal loop and become a part of the sagittal stratum. No individual optic radiation fibers could be differentiated in the temporal loop. The dissections also disclosed that the anterior extension and angulation of the temporal loop vary significantly. CONCLUSIONS The fiber microdissection technique provides clear evidence that a loop in the anterior temporal region exists, but that this temporal loop is not formed exclusively by the optic radiation. Various projection fibers of the IC-SL, of which the optic radiation is only one of the several components, display this common course. The inherent limitations of the fiber dissection technique preclude accurate differentiation among individual fibers of the temporal loop, such as the optic radiation fibers.


2017 ◽  
Vol 127 (5) ◽  
pp. 1134-1138 ◽  
Author(s):  
Kaan Yagmurlu ◽  
M. Yashar S. Kalani ◽  
Mark C. Preul ◽  
Robert F. Spetzler

The authors describe a safe entry zone, the superior fovea triangle, on the floor of the fourth ventricle for resection of deep dorsal pontine lesions at the level of the facial colliculus. Clinical data from a patient undergoing a suboccipital telovelar transsuperior fovea triangle approach to a deep pontine cavernous malformation were reviewed and supplemented with 6 formalin-fixed adult human brainstem and 2 silicone-injected adult human cadaveric heads using the fiber dissection technique to illustrate the utility of this novel safe entry zone. The superior fovea has a triangular shape that is an important landmark for the motor nucleus of the trigeminal, abducens, and facial nerves. The inferior half of the superior fovea triangle may be incised to remove deep dorsal pontine lesions through the floor of the fourth ventricle. The superior fovea triangle may be used as a safe entry zone for dorsally located lesions at the level of the facial colliculus.


2008 ◽  
Vol 62 (suppl_1) ◽  
pp. ONS9-ONS17 ◽  
Author(s):  
Rodolfo J. Recalde ◽  
Eberval G. Figueiredo ◽  
Evandro de Oliveira

Abstract Objective: To study the microanatomy of the brainstem related to the different safe entry zones used to approach intrinsic brainstem lesions. Methods: Ten formalin-fixed and frozen brainstem specimens (20 sides) were analyzed. The white fiber dissection technique was used to study the intrinsic microsurgical anatomy as related to safe entry zones on the brainstem surface. Three anatomic landmarks on the anterolateral brainstem surface were selected: lateral mesencephalic sulcus, peritrigeminal area, and olivary body. Ten other specimens were used to study the axial sections of the inferior olivary nucleus. The clinical application of these anatomic nuances is presented. Results: The lateral mesencephalic sulcus has a length of 7.4 to 13.3 mm (mean, 9.6 mm) and can be dissected safely in depths up to 4.9 to 11.7 mm (mean, 8.02 mm). In the peritrigeminal area, the distance of the fifth cranial nerve to the pyramidal tract is 3.1 to 5.7 mm (mean, 4.64 mm). The dissection may be performed 9.5 to 13.1 mm (mean, 11.2 mm) deeper, to the nucleus of the fifth cranial nerve. The inferior olivary nucleus provides safe access to lesions located up to 4.7 to 6.9 mm (mean, 5.52 mm) in the anterolateral aspect of the medulla. Clinical results confirm that these entry zones constitute surgical routes through which the brainstem may be safely approached. Conclusion: The white fiber dissection technique is a valuable tool for understanding the three-dimensional disposition of the anatomic structures. The lateral mesencephalic sulcus, the peritrigeminal area, and the inferior olivary nucleus provide surgical spaces and delineate the relatively safe alleys where the brainstem can be approached without injuring important neural structures.


2008 ◽  
Vol 63 (suppl_1) ◽  
pp. ONS1-ONS9 ◽  
Author(s):  
Sebastien C. Froelich ◽  
Khaled M. Abdel Aziz ◽  
Paul D. Cohen ◽  
Harry R. van Loveren ◽  
Jeffrey T. Keller

Abstract Objective: Descriptions of Liliequist's membrane, as reported in the literature, vary considerably. In our cadaveric study of Liliequist's membrane, we attempted to clarify and define its anatomic features and boundaries, as well as its relationship with surrounding neurovascular structures. We describe the embryology of this membrane as a remnant of the primary tentorium. The clinical significance of our findings is discussed with respect to third ventriculostomy and surgical approaches to basilar tip aneurysms, suprasellar arachnoid cysts, and perimesencephalic hemorrhage. Methods: Thirteen formalin-fixed adult cadaveric heads were injected with colored silicone. After endoscopic exploration of Liliequist's membrane, a bilateral frontal craniotomy was performed, and the frontal lobes were removed to fully expose Liliequist's membrane. Results: Liliequist's membrane is a complex and highly variable structure that is composed of either a single membrane or two leaves. The membrane was absent in two specimens without any clear demarcation between the interpeduncular, prepontine, and chiasmatic cisterns. Conclusion: Understanding the variable anatomy of Liliequist's membrane is important, particularly to improve current and forthcoming microsurgical and endoscopic neurosurgical procedures. It is important as a surgical landmark in various neurosurgical operations and in the physiopathology of several pathological processes (suprasellar arachnoid cysts and perimesencephalic hemorrhage).


Sign in / Sign up

Export Citation Format

Share Document