fasciculus retroflexus
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

Author(s):  
Verónica Company ◽  
Ana Moreno-Cerdá ◽  
Abraham Andreu-Cervera ◽  
Raquel Murcia-Ramón ◽  
Francisca Almagro-García ◽  
...  

Wnt1 is one of the morphogenes that controls the specification and differentiation of neuronal populations in the developing central nervous system. The habenula is a diencephalic neuronal complex located in the most dorsal aspect of the thalamic prosomere. This diencephalic neuronal population is involved in the limbic system and its malfunction is related with several psychiatric disorders. Our aim is to elucidate the Wnt1 role in the habenula and its main efferent tract, the fasciculus retroflexus, development. In order to achieve these objectives, we analyzed these structures development in a Wnt1 lack of function mouse model. The habenula was generated in our model, but it presented an enlarged volume. This alteration was due to an increment in habenular neuroblasts proliferation rate. The fasciculus retroflexus also presented a wider and disorganized distribution and a disturbed final trajectory toward its target. The mid-hindbrain territories that the tract must cross were miss-differentiated in our model. The specification of the habenula is Wnt1 independent. Nevertheless, it controls its precursors proliferation rate. Wnt1 expressed in the isthmic organizer is vital to induce the midbrain and rostral hindbrain territories. The alteration of these areas is responsible for the fasciculus retroflexus axons misroute.


Author(s):  
Verónica Company ◽  
Abraham Andreu-Cervera ◽  
M. Pilar Madrigal ◽  
Belén Andrés ◽  
Francisca Almagro-García ◽  
...  

The fasciculus retroflexus is an important fascicle that mediates reward-related behaviors and is associated with different psychiatric diseases. It is the main habenular efference and constitutes a link between forebrain regions, the midbrain, and the rostral hindbrain. The proper functional organization of habenular circuitry requires complex molecular programs to control the wiring of the habenula during development. However, the mechanisms guiding the habenular axons toward their targets remain mostly unknown. Here, we demonstrate the role of the mesodiencephalic dopaminergic neurons (substantia nigra pars compacta and ventral tegmental area) as an intermediate target for the correct medial habenular axons navigation along the anteroposterior axis. These neuronal populations are distributed along the anteroposterior trajectory of these axons in the mesodiencephalic basal plate. Using in vitro and in vivo experiments, we determined that this navigation is the result of netrin 1 attraction generated by the mesodiencephalic dopaminergic neurons. This attraction is mediated by the receptor deleted in colorectal cancer (DCC), which is strongly expressed in the medial habenular axons. The increment in our knowledge on the fasciculus retroflexus trajectory guidance mechanisms opens the possibility of analyzing if its alteration in mental health patients could account for some of their symptoms.


2020 ◽  
Vol 79 (7) ◽  
pp. 767-776 ◽  
Author(s):  
Abigail Snyder-Keller ◽  
Valerie J Bolivar ◽  
Steven Zink ◽  
Laura D Kramer

Abstract Intracranial calcifications (ICC) are the most common neuropathological finding in the brains of children exposed in utero to the Zika virus (ZIKV). Using a mouse model of developmental ZIKV infection, we reported widespread calcifications in the brains of susceptible mice that correlated in multiple ways with the behavioral deficits observed. Here, we examined the time course of ICC development and the role of iron deposition in this process, in 3 genetically distinct inbred strains of mice. Brain iron deposits were evident by Perls’ staining at 2 weeks post infection, becoming increasingly dense and coinciding with calcium buildup and the formation of ICCs. A regional analysis of the brains of susceptible mice (C57BL/6J and 129S1/SvImJ strains) revealed the presence of iron initially in regions containing many ZIKV-immunoreactive cells, but then spreading to regions containing few infected cells, most notably the thalamus and the fasciculus retroflexus. Microglial activation was widespread initially and later delineated the sites of ICC formation. Behavioral tests conducted at 5–6 weeks of age revealed greater deficits in mice with the most extensive iron deposition and calcification of subcortical regions, such as thalamus. These findings point to iron deposition as a key factor in the development of ICCs after developmental ZIKV infection.


2020 ◽  
Vol 225 (5) ◽  
pp. 1437-1458 ◽  
Author(s):  
Elena Roman ◽  
Joshua Weininger ◽  
Basil Lim ◽  
Marin Roman ◽  
Denis Barry ◽  
...  

2016 ◽  
Vol 116 (3) ◽  
pp. 1161-1174 ◽  
Author(s):  
P. Leon Brown ◽  
Paul D. Shepard

The lateral habenula, a phylogenetically conserved epithalamic structure, is activated by aversive stimuli and reward omission. Excitatory efferents from the lateral habenula predominately inhibit midbrain dopamine neuronal firing through a disynaptic, feedforward inhibitory mechanism involving the rostromedial tegmental nucleus. However, the lateral habenula also directly targets dopamine neurons within the ventral tegmental area, suggesting that opposing actions may result from increased lateral habenula activity. In the present study, we tested the effect of habenular efferent stimulation on dopamine and nondopamine neurons in the ventral tegmental area of Sprague-Dawley rats using a parasagittal brain slice preparation. Single pulse stimulation of the fasciculus retroflexus excited 48% of dopamine neurons and 51% of nondopamine neurons in the ventral tegmental area of rat pups. These proportions were not altered by excision of the rostromedial tegmental nucleus and were evident in both cortical- and striatal-projecting dopamine neurons. Glutamate receptor antagonists blocked this excitation, and fasciculus retroflexus stimulation elicited evoked excitatory postsynaptic potentials with a nearly constant onset latency, indicative of a monosynaptic, glutamatergic connection. Comparison of responses in rat pups and young adults showed no significant difference in the proportion of neurons excited by fasciculus retroflexus stimulation. Our data indicate that the well-known, indirect inhibitory effect of lateral habenula activation on midbrain dopamine neurons is complemented by a significant, direct excitatory effect. This pathway may contribute to the role of midbrain dopamine neurons in processing aversive stimuli and salience.


2015 ◽  
Vol 85 (4) ◽  
pp. 257-270 ◽  
Author(s):  
Yuji Ishikawa ◽  
Keiji Inohaya ◽  
Naoyuki Yamamoto ◽  
Kouichi Maruyama ◽  
Masami Yoshimoto ◽  
...  

The parapineal is present in many teleost families, while it is absent in several others. To find out why the parapineal is absent at adult stages in the latter families, the development of the epithalamus was examined in the medaka fish (Oryzias latipes). For this purpose, a green fluorescent protein-transgenic medaka line, in which the pineal complex (pineal and parapineal) is visible fluorescently, was used. We found that a distinct parapineal was present in the roof plate at early developmental stages. Subsequently, however, the parapineal and the associated roof plate began to be incorporated into the habenula between embryonic stages 28 and 29. Between embryonic stages 29 and 30, the entire parapineal was incorporated into the habenula. That is, the parapineal became a small caudomedial region (termed the ‘parapineal domain') within the left habenula in the majority of embryos, resulting in the left-sided asymmetry of the epithalamus. Thereby the left habenula became larger and more complex than its right counterpart. In the minority of embryos, the parapineal was incorporated into the right habenula or into the habenulae on both sides. In the majority of embryos, the parapineal domain projected a fiber bundle to a subnucleus (termed the ‘rostromedial subnucleus') in the left habenula. The rostromedial subnucleus sent axons, through the left fasciculus retroflexus, to the rostral region of the left half of the interpeduncular nucleus. We further found that the ratio of the left-sided phenotype was temperature dependent and decreased in embryos raised at a high temperature. The present study is the first demonstration that the supposed lack of a distinct parapineal in adult teleost fishes is due to ontogenetic incorporation into the habenula.


2011 ◽  
Vol 114 (2) ◽  
pp. 463-469 ◽  
Author(s):  
Chan-Young Choi ◽  
Seong-Rok Han ◽  
Gi-Taek Yee ◽  
Chae-Heuck Lee

Object The purpose of this study was to understand 3D relationships of white matter fibers and subcortical areas of gray matter in the central core. Methods The lateral and medial aspects of 4 cerebral hemispheres were dissected, applying the fiber dissection technique under the microscope. Results The central core between the insula and midline includes the extreme, external, and internal capsules; claustrum; putamen; globus pallidus; caudate nucleus; amygdala; diencephalon; substantia innominata; fornix; anterior commissure; mammillothalamic tract; fasciculus retroflexus; thalamic peduncles, including optic and auditory radiations; ansa peduncularis; thalamic fasciculus; and lenticular fasciculus. It is attached to the remainder of the cerebral hemisphere by the cerebral isthmus, which is composed of white matter fibers located between the dorsolateral margin of the caudate nucleus and the full circumference of the circular sulcus of insula. The rostral fibers of the corpus callosum are included in the frontal portion of the cerebral isthmus. Conclusions It is very useful for neurosurgeons to facilitate the understanding of spatial relationships and pertinent surgical approaches in and around the central core with a highly complex anatomy by using fiber dissection.


Sign in / Sign up

Export Citation Format

Share Document