­Actual Evapotranspiration for Sugarcane Based on Bowen Ratio-Energy Balance and Soil Water Balance Models with Optimized Crop Coefficients.

Author(s):  
Suelen da Costa Faria Martins ◽  
Marcos Alex dos Santos ◽  
Gustavo Bastos Lyra ◽  
José Leonaldo Souza ◽  
Guilherme Bastos Lyra ◽  
...  

Abstract Evapotranspiration is an important parameter to evaluate soil water deficit and water use efficiency, especially at places with irregularly distributed precipitation.The aim of this study was to assess the daily actual evapotranspiration (ETa) estimated by the Thornthwaite and Mather soil water balance method adapted for crops (ThM) and by the dual Kc approach with the crop coefficients optimized from inversing modeling and by the adjustment procedure suggested in FAO-56. The models comparison and optimization were performed with actual evapotranspiration determined by the Bowen ratio – energy balance method (ETβ) for sugarcane at full canopy closure grown in Alagoas State, Northeastern Brazil. The objective function of the inverse problem was defined in terms of ETβ and ETa estimated by the ThM and dual Kc method by optimizing single crop coefficient (Kc) and the basal coefficient Kcb, respectively. Both optimized Kcand Kcbwere lower than the adjusted KcFAO56, with optimized Kconly 3% less than the Kc obtained experimentally. ETa estimated by ThM and dual Kc models with optimized crop coefficients (Kc = 1.05 or Kcb = 1.00) had similar high precision (r² >0.79) and accuracy (dm>0.93 and RMSE < 0.30 mm d-1), whereas using the coefficients derived from FAO 56 overestimated ETa in both models.

2009 ◽  
Vol 13 (7) ◽  
pp. 1061-1074 ◽  
Author(s):  
M. Minacapilli ◽  
C. Agnese ◽  
F. Blanda ◽  
C. Cammalleri ◽  
G. Ciraolo ◽  
...  

Abstract. Actual evapotranspiration from typical Mediterranean crops has been assessed in a Sicilian study area by using surface energy balance (SEB) and soil-water balance models. Both modelling approaches use remotely sensed data to estimate evapotranspiration fluxes in a spatially distributed way. The first approach exploits visible (VIS), near-infrared (NIR) and thermal (TIR) observations to solve the surface energy balance equation whereas the soil-water balance model uses only VIS-NIR data to detect the spatial variability of crop parameters. Considering that the study area is characterized by typical spatially sparse Mediterranean vegetation, i.e. olive, citrus and vineyards, alternating bare soil and canopy, we focused the attention on the main conceptual differences between one-source and two-sources energy balance models. Two different models have been tested: the widely used one-source SEBAL model, where soil and vegetation are considered as the sole source (mostly appropriate in the case of uniform vegetation coverage) and the two-sources TSEB model, where soil and vegetation components of the surface energy balance are treated separately. Actual evapotranspiration estimates by means of the two surface energy balance models have been compared vs. the outputs of the agro-hydrological SWAP model, which was applied in a spatially distributed way to simulate one-dimensional water flow in the soil-plant-atmosphere continuum. Remote sensing data in the VIS and NIR spectral ranges have been used to infer spatially distributed vegetation parameters needed to set up the upper boundary condition of SWAP. Actual evapotranspiration values obtained from the application of the soil water balance model SWAP have been considered as the reference to be used for energy balance models accuracy assessment. Airborne hyperspectral data acquired during a NERC (Natural Environment Research Council, UK) campaign in 2005 have been used. The results of this investigation seem to prove a slightly better agreement between SWAP and TSEB for some fields of the study area. Further investigations are programmed in order to confirm these indications.


2021 ◽  
Vol 29 ◽  
pp. 146-156
Author(s):  
Fabiana da Costa Barros ◽  
Suelen da Costa Faria Martins ◽  
Gustavo Bastos Lyra ◽  
Leonardo Duarte Batista da Silva ◽  
João Paulo Francisco ◽  
...  

Determining the real water requirement for pastures is essential for the rational use of irrigation. The aim of this work was to assess the crop coefficient and performance of the Thornthwaite and Mather soil water balance (ThM) adapted to estimate the daily actual evapotranspiration (ETa) of a pasture in relation to the Bowen ratio - energy balance method (BREB). The experiment was carried out from July 2018 to June 2019 in Cachoeiras de Macacu, Rio de Janeiro State (RJ) (22º 27’S; 42º 45’W and 30 m altitude). Micrometeorological and meteorological measurements were conducted in a micrometeorological tower installed in the pasture and also in an automatic weather station, located 1 km from the pasture area. The ThM model was evaluated using linear regression between ETa determinate from BREB and the estimates from ThM using its coefficient of determination (R²) and the modified Willmott agreement index (dm). The ThM model underestimated (between 11 and 16%) the ETa for all seasons, except for spring, which overestimated by 1%. The highest precision and accuracy of the estimates were observed in autumn (R² = 0.84 and dm = 0.68) and spring (R² = 0.83 and dm = 0.82). In summer (R² = 0.56 and dm = 0.73) and winter (R² = 0.43 and dm = 0.66), the lower performance was caused by the inability of the model to represent water extraction from the soil in dry periods.


2016 ◽  
Vol 13 (1) ◽  
pp. 63-75 ◽  
Author(s):  
K. Imukova ◽  
J. Ingwersen ◽  
M. Hevart ◽  
T. Streck

Abstract. The energy balance of eddy covariance (EC) flux data is typically not closed. The nature of the gap is usually not known, which hampers using EC data to parameterize and test models. In the present study we cross-checked the evapotranspiration data obtained with the EC method (ETEC) against ET rates measured with the soil water balance method (ETWB) at winter wheat stands in southwest Germany. During the growing seasons 2012 and 2013, we continuously measured, in a half-hourly resolution, latent heat (LE) and sensible (H) heat fluxes using the EC technique. Measured fluxes were adjusted with either the Bowen-ratio (BR), H or LE post-closure method. ETWB was estimated based on rainfall, seepage and soil water storage measurements. The soil water storage term was determined at sixteen locations within the footprint of an EC station, by measuring the soil water content down to a soil depth of 1.5 m. In the second year, the volumetric soil water content was additionally continuously measured in 15 min resolution in 10 cm intervals down to 90 cm depth with sixteen capacitance soil moisture sensors. During the 2012 growing season, the H post-closed LE flux data (ETEC =  3.4 ± 0.6 mm day−1) corresponded closest with the result of the WB method (3.3 ± 0.3 mm day−1). ETEC adjusted by the BR (4.1 ± 0.6 mm day−1) or LE (4.9 ± 0.9 mm day−1) post-closure method were higher than the ETWB by 24 and 48 %, respectively. In 2013, ETWB was in best agreement with ETEC adjusted with the H post-closure method during the periods with low amount of rain and seepage. During these periods the BR and LE post-closure methods overestimated ET by about 46 and 70 %, respectively. During a period with high and frequent rainfalls, ETWB was in-between ETEC adjusted by H and BR post-closure methods. We conclude that, at most observation periods on our site, LE is not a major component of the energy balance gap. Our results indicate that the energy balance gap is made up by other energy fluxes and unconsidered or biased energy storage terms.


Author(s):  
José E. F. de Morais ◽  
Thieres G. F. da Silva ◽  
Maria G. de Queiroz ◽  
Gherman G. L. de Araújo ◽  
Magna S. B. Moura ◽  
...  

ABSTRACT The knowledge on soil water dynamics is the basis of crop water management. The soil water balance (SWB) method is used for this purpose. However, its application in cactus may lead to misinterpretation in water efficiency analysis, since it does not consider the amount of water retained in the plant (WRP). This study aimed to evaluate SWB applicability, hydrodynamic changes and water efficiency of forage cactus clones under irrigation. The clones ‘Orelha de Elefante Mexicana’ (OEM), ‘IPA Sertânia’ (IPA) and ‘Miúda’ (MIU) were submitted to irrigation depths (2.5, 5.0 and 7.5 mm) and frequencies (7, 14 and 28 days), in Serra Talhada, PE, Brazil, between March 2012 and August 2013. The SWB was applied, by adding the WRP in the estimate of the effective actual evapotranspiration (ETrEF). The water efficiency indicators were calculated. The actual evapotranspiration on SWB (ETrSWB) overestimated ETrEF and, like other SWB components, it was affected by the factors irrigation depth, frequency and clone. The clone OEM is the most efficient, due to the use of the WRP, while MIU leads to highest gross economic returns for sale of cladodes as seed. As conclusion, the application of the soil water balance method in areas cultivated with cactus species must be accompanied by WRP.


2015 ◽  
Vol 10 (24) ◽  
pp. 2407-2414 ◽  
Author(s):  
Greco de Guimaraes Cardoso Gabriel ◽  
Campos de Oliveira Renato ◽  
Batista Teixeira Marconi ◽  
Sergio Dorneles Milton ◽  
Marcos Oliveira Domingos Romenig ◽  
...  

Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2478 ◽  
Author(s):  
Ali Rashid Niaghi ◽  
Xinhua Jia

As an important component of the water budget, quantifying actual crop evapotranspiration (ET) will enable better planning, management, and allocation of the water resources. However, accurate ET measurement has always been a challenging task in agricultural water management. In the upper Midwest, where subsurface drainage is a common practice due to the shallow ground water depth and heavy clayey soil, ET measurement using traditional ground-based methods is more difficult. In this study, ET was measured using the eddy covariance (EC), Bowen ratio-energy balance (BREB), and soil water balance (SWB) methods during the 2018 corn growing season, and the results of the three methods were compared. To close the energy balance for the EC system, the residual method was used. For the SWB method, capillary rise was included in the ET estimation and was calculated using the measured soil water potential. The change of soil water content for ET estimation using the SWB method was calculated in four different ways, including daily average, 24:00–2:00 average, 24:00–4:00 average, and 4:00 measurement. Through the growing season, six observation periods (OPs) with no rainfall or minimal rainfall events were selected for comparisons among the three methods. The estimated latent heat flux (LE) by the EC system using the residual method showed a 29% overestimation compared to LE determined by the BREB system for the entire growing season. After excluding data taken in May and October, LE determined by the EC system was only 10% higher, indicating that the main difference between the two systems occurred during the early and late of the growing season. By considering all six OPs, a 6%–22% LE difference between the EC and the BREB systems was observed. Except during the early growing and late harvest seasons, both systems agreed well in LE estimation. The SWB method using the average soil water contents between 24:00 and 2:00 time period to calculate the daily capillary rise produced the best statistical fit when compared to the ET estimated by the BREB, with a root-mean-square error of 1.15. Therefore, measuring ET using the capillary rise from a shallow water table between 24:00 and 2:00 could improve the performance of the SWB methodology for ET measurement.


Sign in / Sign up

Export Citation Format

Share Document