scholarly journals Titanium dioxide nanoparticles exacerbate allergic airway inflammation via TXNIP upregulation in a mouse model of asthma

Author(s):  
Je-Oh Lim ◽  
Se-Jin Lee ◽  
Woong-Il Kim ◽  
So-Won Pak ◽  
Changjong Moon ◽  
...  

Abstract Background Titanium dioxide nanoparticles (TiO2NPs) are widely used in the fields of industry and medicine and in various consumer products. With the increasing use of TiO2NPs, there has been an increase in the number of toxicity studies; however, studies investigating the mechanism underlying its toxicity are very rare. In this study, we evaluated the potential toxic effects of TiO2NPs exposure on the lungs as well as the development of asthma in ovalbumin (OVA)-induced mouse model of asthma. We also investigated the related toxic mechanism. Results TiO2NPs caused pulmonary toxicity by exacerbating the inflammatory response, indicated by an increase in the number of inflammatory cells and levels of inflammatory mediators. Exposure of mice with OVA-induced asthma to TiO2NPs led to significant increases in inflammatory mediators, cytokines, and airway hyperresponsiveness compared with non-exposed mice with asthma. This was also accompanied by an increase in inflammatory cell infiltration and mucus production in the lung tissues. TiO2NPs also decreased the expression of B-cell lymphoma 2 (Bcl2) and increased the expression of thioredoxin-interacting protein (TXNIP), phospho-apoptosis signal-regulating kinase 1, Bcl2-associated X, and cleaved-caspase 3 in the lungs of asthmatic mice compared with those of non-exposed asthmatic mice. These responses were consistent with in vitro results obtained using human airway epithelial cells. TiO2NPs treated cells exhibited an increase in the mRNA and protein expression of IL-1β, IL-6, and TNF-α with an elevation of TXNIP signaling compared to non-treated cells. Moreover, pathophysiological changes induced by TiO2NPs treatment were significantly decreased by TXNIP knockdown in the airway epithelial cells. Conclusion Taken together, TiO2NPs exposure induced toxicological changes in the respiratory tract and exacerbated the development of asthma via activation of the TXNIP-apoptosis pathway. These results provide insights into the mechanism underlying TiO2NPs-mediated respiratory toxicity.

2021 ◽  
Vol 22 (18) ◽  
pp. 9924
Author(s):  
Je-Oh Lim ◽  
Se-Jin Lee ◽  
Woong-Il Kim ◽  
So-Won Pak ◽  
Changjong Moon ◽  
...  

Titanium dioxide nanoparticles (TiO2NPs) are widely used in industrial and medicinal fields and in various consumer products, and their increasing use has led to an increase in the number of toxicity studies; however, studies investigating the underlying toxicity mechanism have been rare. In this study, we evaluated potential toxic effects of TiO2NPs exposure on lungs as well as the development of asthma through the ovalbumin (OVA)-induced mouse model of asthma. Furthermore, we also investigated the associated toxic mechanism. TiO2NPs caused pulmonary toxicity by exacerbating the inflammatory response, indicated by an increase in the number and level of inflammatory cells and mediators, respectively. OVA-induced asthma exposed mice to TiO2NPs led to significant increases in inflammatory mediators, cytokines, and airway hyperresponsiveness compared with those in non-exposed asthmatic mice. This was also accompanied by increased inflammatory cell infiltration and mucus production in the lung tissues. Additionally, TiO2NPs decreased the expression of B-cell lymphoma 2 (Bcl2) and the expressions of thioredoxin-interacting protein (TXNIP), phospho-apoptosis signal-regulating kinase 1, Bcl2-associated X, and cleaved-caspase 3 were escalated in the lungs of asthmatic mice compared with those in non-exposed asthmatic mice. These responses were consistent with in vitro results obtained using human airway epithelial cells. TiO2NPs treated cells exhibited an increase in the mRNA and protein expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α with an elevation of TXNIP signaling compared to non-treated cells. Moreover, pathophysiological changes induced by TiO2NP treatment were significantly decreased by TXNIP knockdown in airway epithelial cells. Overall, TiO2NP exposure induced toxicological changes in the respiratory tract and exacerbated the development of asthma via activation of the TXNIP-apoptosis pathway. These results provide insights into the underlying mechanism of TiO2NP-mediated respiratory toxicity.


2017 ◽  
Vol 199 (1) ◽  
pp. 48-61 ◽  
Author(s):  
Carina Klaßen ◽  
Anna Karabinskaya ◽  
Lien Dejager ◽  
Sabine Vettorazzi ◽  
Justine Van Moorleghem ◽  
...  

2020 ◽  
Vol 177 (1) ◽  
pp. 248-262
Author(s):  
Kaitlin M Pearce ◽  
Imoh Okon ◽  
Christa Watson-Wright

Abstract Engineered metal nanoparticles (ENPs) are frequently incorporated into aerosolized consumer products, known as nano-enabled products (NEPs). Concern for consumer pulmonary exposures grows as NEPs produce high concentrations of chemically modified ENPs. A significant knowledge gap still exists surrounding NEP aerosol respiratory effects as previous research focuses on pristine/unmodified ENPs. Our research evaluated metal-containing aerosols emitted from nano-enabled cosmetics and their induction of oxidative stress and DNA damage, which may contribute to epithelial mesenchymal transitions (EMT) within primary human small airway epithelial cells. We utilized an automated NEP generation system to monitor and gravimetrically collect aerosols from two aerosolized cosmetic lines. Aerosol monitoring data were inputted into modeling software to determine potential inhaled dose and in vitro concentrations. Toxicological profiles of aerosols and comparable pristine ENPs (TiO2 and Fe2O3) were used to assess reactive oxygen species and oxidative stress by fluorescent-based assays. Single-stranded DNA (ssDNA) damage and 8-oxoguanine were detected using the CometChip assay after 24-h exposure. Western blots were conducted after 21-day exposure to evaluate modulation of EMT markers. Results indicated aerosols possessed primarily ultrafine particles largely depositing in tracheobronchial lung regions. Significant increases in oxidative stress, ssDNA damage, and 8-oxoguanine were detected post-exposure to aerosols versus pristine ENPs. Western blots revealed statistically significant decreases in E-cadherin and increases in vimentin, fascin, and CD44 for two aerosols, indicating EMT. This work suggests certain prolonged NEP inhalation exposures cause oxidative DNA damage, which may play a role in cellular changes associated with reduced respiratory function and should be of concern.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mutsuo Yamaya

Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs), leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.


2020 ◽  
Vol 319 (6) ◽  
pp. L893-L907 ◽  
Author(s):  
Velmurugan Meganathan ◽  
Regina Moyana ◽  
Kartiga Natarajan ◽  
Weshely Kujur ◽  
Shilpa Kusampudi ◽  
...  

Inhalation of organic dust is an occupational hazard leading to the development of respiratory symptoms and respiratory diseases. Bioaerosols from concentrated animal feeding operations are rich in bacteria and could carry bacterial extracellular vesicles (EVs) that could induce lung inflammation. It is not known if organic dust contains bacterial EVs and whether they modulate lung inflammation. Herein, we show that poultry organic dust contains bacterial EVs (dust EVs) that induce lung inflammation. Treatment of airway epithelial cells, THP-1-monocytes and -macrophages with dust EVs rapidly induced IL-8, IL-6, ICAM-1, proIL-1β, and TNF-α levels. In airway epithelial cells, induction of inflammatory mediators was due to increased mRNA levels and NF-κB activation. Induction of inflammatory mediators by dust EVs was not inhibited by polymyxin B. Single and repeated treatments of mice with dust EVs increased lung KC, IL-6, and TNF-α levels without significantly altering IL-17A levels. Increases in cytokines were associated with enhanced neutrophil infiltration into the lung. Repeated treatments of mice with dust EVs increased lung mean linear intercept and increased collagen deposition around airways indicating lung remodeling. Peribronchial cell infiltrates and airway epithelial thickening were also observed in treated mice. Because bacterial EVs are nanometer-sized particles, they can reach and accumulate in the bronchiolar and alveolar regions causing lung injury leading to the development of respiratory diseases. Our studies have provided new evidence for the presence of bacterial EVs in organic dust and for their role as one of the causative agents of organic dust-induced lung inflammation and lung injury.


Sign in / Sign up

Export Citation Format

Share Document