scholarly journals Bacterial extracellular vesicles isolated from organic dust induce neutrophilic inflammation in the lung

2020 ◽  
Vol 319 (6) ◽  
pp. L893-L907 ◽  
Author(s):  
Velmurugan Meganathan ◽  
Regina Moyana ◽  
Kartiga Natarajan ◽  
Weshely Kujur ◽  
Shilpa Kusampudi ◽  
...  

Inhalation of organic dust is an occupational hazard leading to the development of respiratory symptoms and respiratory diseases. Bioaerosols from concentrated animal feeding operations are rich in bacteria and could carry bacterial extracellular vesicles (EVs) that could induce lung inflammation. It is not known if organic dust contains bacterial EVs and whether they modulate lung inflammation. Herein, we show that poultry organic dust contains bacterial EVs (dust EVs) that induce lung inflammation. Treatment of airway epithelial cells, THP-1-monocytes and -macrophages with dust EVs rapidly induced IL-8, IL-6, ICAM-1, proIL-1β, and TNF-α levels. In airway epithelial cells, induction of inflammatory mediators was due to increased mRNA levels and NF-κB activation. Induction of inflammatory mediators by dust EVs was not inhibited by polymyxin B. Single and repeated treatments of mice with dust EVs increased lung KC, IL-6, and TNF-α levels without significantly altering IL-17A levels. Increases in cytokines were associated with enhanced neutrophil infiltration into the lung. Repeated treatments of mice with dust EVs increased lung mean linear intercept and increased collagen deposition around airways indicating lung remodeling. Peribronchial cell infiltrates and airway epithelial thickening were also observed in treated mice. Because bacterial EVs are nanometer-sized particles, they can reach and accumulate in the bronchiolar and alveolar regions causing lung injury leading to the development of respiratory diseases. Our studies have provided new evidence for the presence of bacterial EVs in organic dust and for their role as one of the causative agents of organic dust-induced lung inflammation and lung injury.

2004 ◽  
Vol 287 (1) ◽  
pp. L143-L152 ◽  
Author(s):  
Shawn J. Skerrett ◽  
H. Denny Liggitt ◽  
Adeline M. Hajjar ◽  
Robert K. Ernst ◽  
Samuel I. Miller ◽  
...  

To determine the role of respiratory epithelial cells in the inflammatory response to inhaled endotoxin, we selectively inhibited NF-κB activation in the respiratory epithelium using a mutant IκB-α construct that functioned as a dominant negative inhibitor of NF-κB translocation (dnIκB-α). We developed two lines of transgenic mice in which expression of dnIκB-α was targeted to the distal airway epithelium using the human surfactant apoprotein C promoter. Transgene expression was localized to the epithelium of the terminal bronchioles and alveoli. After inhalation of LPS, nuclear translocation of NF-κB was evident in bronchiolar epithelium of nontransgenic but not of transgenic mice. This defect was associated with impaired neutrophilic lung inflammation 4 h after LPS challenge and diminished levels of TNF-α, IL-1β, macrophage inflammatory protein-2, and KC in lung homogenates. Expression of TNF-α within bronchiolar epithelial cells and of VCAM-1 within peribronchiolar endothelial cells was reduced in transgenic animals. Thus targeted inhibition of NF-κB activation in distal airway epithelial cells impaired the inflammatory response to inhaled LPS. These data provide causal evidence that distal airway epithelial cells and the signals they transduce play a physiological role in lung inflammation in vivo.


2020 ◽  
Vol 30 (Supplement_5) ◽  
Author(s):  
L Falcone ◽  
E Aruffo ◽  
P Di Carlo ◽  
P Del Boccio ◽  
M C Cufaro ◽  
...  

Abstract Background Reactive oxygen species (ROS) and oxidative stress in the respiratory system are involved in lung inflammation and tumorigenesis. Ozone (O3) is one of the main components of air pollution in urban areas able to act as strong pro-oxidant agent, however its effects on human health is still poorly investigated. In this study the effect of O3 has been evaluated in THP-1 monocytes differentiated into macrophages with PMA and in HBEpC (primary human bronchial epithelial) cells, two model systems for in vitro studies and translational research. Methods Cell viability, ROS and pro-inflammatory cytokines like interleukin-8(IL-8) and tumor necrosis factor(TNF-α) have been tested in the above-mentioned cell lines not exposed to any kind of pollution (basal condition-b.c.) or exposed to O3 at a concentration of 120 ppb. In HBEpC a labelfree shotgun proteomics analysis has been also performed in the same conditions. Results Ozone significantly increased the production of IL-8 and TNF-α in THP-1 whereas no changes were shown in HBEpC. In both cell lines lipopolysaccharide(LPS) caused an increase of IL-8 and TNF-α production in b.c. and O3 treatment potentiated this effect. Ozone exposure increased ROS formation in a time dependent manner in both cell lines and in THP-1 cells a decrease in catalase activity was also shown. Finally, according to these data, functional proteomics analysis revealed that in HBEpC exposure to O3 many differential proteins are related to oxidative stress and inflammation. Conclusions Our results indicate that O3, at levels that can be reached in urban areas, causes an increase of pro-inflammatory agents either per se or potentiating the effect of immune response stimulators in cell models of human macrophages and human airway epithelial cells. Interestingly, the proteomic analysis showed that besides the dysregulated proteins, O3 induced the expression of AKR1D1 and AKR1B10, proteins recognized to play a significant role in cancer development. Key messages This study adds new pieces of information on the association between O3 exposure and detrimental effects on respiratory system. This study suggests the need for further research on the mechanisms involved and for a continued monitoring/re-evaluation of air pollution standards aimed at safeguarding human health.


2010 ◽  
Vol 28 (7) ◽  
pp. 597-603 ◽  
Author(s):  
Li Hongjia ◽  
Gai Qingling ◽  
Lin Meiying ◽  
Wang Weixuan ◽  
Zhang Lihong ◽  
...  

Author(s):  
Katja Koeppen ◽  
Amanda B Nymon ◽  
Roxanna Barnaby ◽  
Zhongyou Li ◽  
Thomas H Hampton ◽  
...  

Mutations in CFTR alter macrophage responses, for example, by reducing their ability to phagocytose and kill bacteria. Altered macrophage responses may facilitate bacterial infection and inflammation in the lungs, contributing to morbidity and mortality in cystic fibrosis (CF). Extracellular vesicles (EVs) are secreted by multiple cell types in the lungs and participate in the host immune response to bacterial infection, but the effect of EVs secreted by CF airway epithelial cells (AEC) on CF macrophages is unknown. This report examines the effect of EVs secreted by primary AEC on monocyte derived macrophages (MDM) and contrasts responses of CF and WT MDM. We found that EVs generally increase pro-inflammatory cytokine secretion and expression of innate immune genes in MDM, especially when EVs are derived from AEC exposed to Pseudomonas aeruginosa, and that this effect is attenuated in CF MDM. Specifically, EVs secreted by P. aeruginosa exposed AEC induced immune response genes and increased secretion of pro-inflammatory cytokines, chemoattractants and chemokines involved in tissue repair by WT MDM, but these effects were less robust in CF MDM. We attribute attenuated responses by CF MDM to differences between CF and WT macrophages because EVs secreted by CF AEC or WT AEC elicited similar responses in CF MDM. Our findings demonstrate the importance of AEC EVs in macrophage responses and show that the Phe508del mutation in CFTR attenuates the innate immune response of MDM to EVs.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Joao Gimenes-Junior ◽  
Nicole Owuar ◽  
Hymavathi Reddy Vari ◽  
Wuyan Li ◽  
Nathaniel Xander ◽  
...  

AbstractForkhead transcription factor class O (FOXO)3a, which plays a critical role in a wide variety of cellular processes, was also found to regulate cell-type-specific antiviral responses. Airway epithelial cells express FOXO3a and play an important role in clearing rhinovirus (RV) by mounting antiviral type I and type III interferon (IFN) responses. To elucidate the role of FOXO3a in regulating antiviral responses, we generated airway epithelial cell-specific Foxo3a knockout (Scga1b1-Foxo3a−/−) mice and a stable FOXO3a knockout human airway epithelial cell line. Compared to wild-type, Scga1b1-Foxo3a−/− mice show reduced IFN-α, IFN-β, IFN-λ2/3 in response to challenge with RV or double-stranded (ds)RNA mimic, Poly Inosinic-polycytidylic acid (Poly I:C) indicating defective dsRNA receptor signaling. RV-infected Scga1b1-Foxo3a−/− mice also show viral persistence, enhanced lung inflammation and elevated pro-inflammatory cytokine levels. FOXO3a K/O airway epithelial cells show attenuated IFN responses to RV infection and this was associated with conformational change in mitochondrial antiviral signaling protein (MAVS) but not with a reduction in the expression of dsRNA receptors under unstimulated conditions. Pretreatment with MitoTEMPO, a mitochondrial-specific antioxidant corrects MAVS conformation and restores antiviral IFN responses to subsequent RV infection in FOXO3a K/O cells. Inhibition of oxidative stress also reduces pro-inflammatory cytokine responses to RV in FOXO3a K/O cells. Together, our results indicate that FOXO3a plays a critical role in regulating antiviral responses as well as limiting pro-inflammatory cytokine expression. Based on these results, we conclude that FOXO3a contributes to optimal viral clearance and prevents excessive lung inflammation following RV infection.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1652
Author(s):  
Tiziana Corsello ◽  
Andrzej S. Kudlicki ◽  
Roberto P. Garofalo ◽  
Antonella Casola

Exposure to environmental tobacco smoke (ETS) is a known risk factor for the development of chronic lung diseases, cancer, and the exacerbation of viral infections. Extracellular vesicles (EVs) have been identified as novel mediators of cell–cell communication through the release of biological content. Few studies have investigated the composition/function of EVs derived from human airway epithelial cells (AECs) exposed to cigarette smoke condensate (CSC), as surrogates for ETS. Using novel high-throughput technologies, we identified a diverse range of small noncoding RNAs (sncRNAs), including microRNA (miRNAs), Piwi-interacting RNA (piRNAs), and transfer RNA (tRNAs) in EVs from control and CSC-treated SAE cells. CSC treatment resulted in significant changes in the EV content of miRNAs. A total of 289 miRNAs were identified, with five being significantly upregulated and three downregulated in CSC EVs. A total of 62 piRNAs were also detected in our EV preparations, with five significantly downregulated and two upregulated in CSC EVs. We used TargetScan and Gene Ontology (GO) analysis to predict the biological targets of hsa-miR-3913-5p, the most represented miRNA in CSC EVs. Understanding fingerprint molecules in EVs will increase our knowledge of the relationship between ETS exposure and lung disease, and might identify potential molecular targets for future treatments.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Mutsuo Yamaya

Infection with respiratory viruses, including rhinoviruses, influenza virus, and respiratory syncytial virus, exacerbates asthma, which is associated with processes such as airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. In patients with viral infections and with infection-induced asthma exacerbation, inflammatory mediators and substances, including interleukins (ILs), leukotrienes and histamine, have been identified in the airway secretions, serum, plasma, and urine. Viral infections induce an accumulation of inflammatory cells in the airway mucosa and submucosa, including neutrophils, lymphocytes and eosinophils. Viral infections also enhance the production of inflammatory mediators and substances in airway epithelial cells, mast cells, and other inflammatory cells, such as IL-1, IL-6, IL-8, GM-CSF, RANTES, histamine, and intercellular adhesion molecule-1. Viral infections affect the barrier function of the airway epithelial cells and vascular endothelial cells. Recent reports have demonstrated augmented viral production mediated by an impaired interferon response in the airway epithelial cells of asthma patients. Several drugs used for the treatment of bronchial asthma reduce viral and pro-inflammatory cytokine release from airway epithelial cells infected with viruses. Here, I review the literature on the pathogenesis of the viral infection-induced exacerbation of asthma and on the modulation of viral infection-induced airway inflammation.


Sign in / Sign up

Export Citation Format

Share Document