scholarly journals Evaluating The Groundwater Potential of Wadi Al-Jizi, Sultanate of Oman By Intergrating Remote Sensing & GIS Techniques

Author(s):  
Javed Akhtar ◽  
Ahmed Sana ◽  
Syed Mohammed Tauseef ◽  
Gajendran Chellaiah ◽  
Parmeswari Kaliyaperumal ◽  
...  

Abstract Groundwater resources are highly stressed due to their overuse, especially in the arid region. This study is aimed at discovering potential groundwater resource zones using currently available data and state-of-the-art methods. This will lead to effective management of scarcely available and rapidly depleting groundwater resources in the Wadi Al-Jizi catchment, located in the Al-Batinah region. Data on terrain characteristics, geology, and geomorphology was integrated using remote sensing techniques and Geographical Information System (GIS). The result from this exercise was used for the identification of areas with a high potential for groundwater availability. These areas were classified into five types; namely; excellent, good, medium, low, and very low. The present study shows that the integration of all the weighted parameters shows promising results in the zonation of groundwater. This study shall be useful to the decision-makers in highlighting potential drilling as well as recharge sites in the area.

2021 ◽  
Vol 14 (12) ◽  
pp. 13-22
Author(s):  
Ajgaonkar Swanand ◽  
S. Manjunatha

Groundwater research has evolved tremendously as presently it is the need of society. Remote Sensing (RS) and Geographical Information System (GIS) are the main methods in finding the potential zones for the groundwater. They help in assessing, exploring, monitoring and conserving groundwater resources. A case study was conducted to find the groundwater potential zones in Lingasugur taluk, Raichur District, Karnataka State, India. Ten thematic maps were prepared for the study area such as geology, hydrogeomorphology, land use/ land cover, soil type, NDVI, NDWI, slope map, lineament density, rainfall and drainage density. A weighted overlay superimposed method was used after converting all the thematic maps in raster format. Thus from analysis, the classes in groundwater potential were made as very good, moderate, poor and very poor zones covering an area of 10.1 sq.km., 169.25 sq.km., 1732.31 sq.km. and 53.66 sq.km. respectively. By taking the present study into consideration, the future plans for urbanization, recharge structures and groundwater exploration sites can be decided.


Author(s):  
Ballu Harish ◽  
Mahammad Haseena

<p><strong>Background: </strong>The ground water is the most precious and important resource around the world and is decreasing day by day. In connection, there is a need to bound the potential groundwater zones. The geographical information system (GIS) and remote sensing techniques have become important tools to locate groundwater potential zones.</p><p><strong>Methods</strong>: This research has been carried out to identify ground water potential zones in Nuthankal Mandal with help of GIS and remote sensing techniques. In order to evaluate the ground water potential zones, different thematic maps such as geology, slope, soil, drainage density map, land use and land cover and surface water bodies i.e., lakes and other using remotely-sensed data as well as toposheets and secondary data, collected from concern department. The prepared layers are further used for mapping and identification of ground water potential zones.</p><p><strong>Results</strong>: In this study ground water potential zones are demarked with the help of composite maps, which are generated using GIS tools. The accurate information to obtain the parameters that can be considered for identifying the ground water potential zone such as geology, slope, drainage density and lineament density are generated using the satellite data and survey of India (SOI) Topo-sheets, the groundwater potential zones are classified into five categories like very poor, poor, moderate, good &amp; very good. The use of suggested methodology is demonstrated for a selected study area in Nuthankal Mandal.</p><p><strong>Conclusions</strong>: This groundwater potential information was also used for identification of suitable locations for extraction of water.</p>


Author(s):  
E. E. Epuh ◽  
K. A. Sanni ◽  
M. J. Orji

Productivity through groundwater is quite high as compared to surface water, but groundwater resources have not yet been properly exploited. The present study is used to delineate various groundwater potential zones for the assessment of groundwater availability in Lagos metropolis using remote sensing and GIS and hydrogeophysics techniques. Landsat 8, SRTM, geological, soil, and rainfall data were used in the study to prepare various thematic maps, viz., geomorphological, slope, soil, lineament density, rainfall and land use maps. On the basis of relative contribution of each of these maps towards groundwater potential, the weight of each thematic map have been selected and assigned to each map. Hydrogeophysics investigation using Vertical Electric Sounding (VES) was applied to validate the remote sensing and GIS results. All the thematic maps have been registered with one another through ground control points and integrated using the weighted overlay method in GIS for computing groundwater potential index. Based on the methological approach, the ground water potential zones were delineated. The results showed that there are five categories of groundwater potential zones within the study area in which percentage values were contained in each of the categories thereby making major portion of the study area “high” and “moderate” prospect while a few scattered areas have “low” prospect. The very high potential areas are mainly concentrated along the River Alluvium while the “very low” prospect are majorly where there is sand and clay. The best groundwater potential zone is in the southern part due to the presence of fractures, swamp soils which have high infiltration ability and the presence of waterbody which is chiefly accountable for the groundwater recharge in any area. The VES data showed the depth of the aquifer for good water and the polluted aquifer within the study area.


2020 ◽  
Vol 4 (1) ◽  
pp. 57-60
Author(s):  
Zulherry Isnain ◽  
Siti Nadia Abd Ghaffar

The growing demand for groundwater is due to several reasons such as the increment of population, agriculture, pollution, industrialization and urbanization. This study aims to map the groundwater potential zones by using the Geographical Information System (GIS) with remote sensing techniques in the study area. The study area is located at Kg Timbang Dayang and its surrounding at Kota Belud, Sabah. Eight parameters were studied that affect the occurrence of groundwater in the study area. Those parameters are obtained from existing maps, remote sensing imagery and associated databases. The parameters are; lithology, rainfall distribution, drainage density, lineament density, soil types, elevation, slope steepness and landuse. All these parameters will be used to create the thematic maps based on the given weightage values. Finally, all the thematic maps will be integrated to produce the final groundwater potential map of the study area. The groundwater potential map is classified into three categories which are low, moderate and high.


2018 ◽  
Vol 2 (1) ◽  
pp. 16-27 ◽  
Author(s):  
Vaishnavi Mundalik ◽  
Clinton Fernandes ◽  
Ajaykumar Kadam ◽  
Bhavana Umrikar

Groundwater is an important source of drinking water in rural parts of India. Because of the increasing demand for water, it is essential to identify new sources for the sustainable development of this resource. The potential mapping and exploration of groundwater resources have become a breakthrough in the field of hydrogeological research. In the present paper, a groundwater prospects map is delineated for the assessment of groundwater availability in Kar basin on basaltic terrain, using remote sensing and Geographic Information System (GIS) techniques. Various thematic layers such as geology, slope, soil, geomorphology, drainage density and rainfall are prepared using satellite data, topographic maps and field data. The ranks and weights were assigned to each thematic layer and various categories of those thematic layers using AHP technique respectively. Further, a weighted overlay analysis was performed by reclassifying them in the GIS environment to prepare the groundwater potential map of the study area. The results show that groundwater prospects map classified into three classes low, moderate and high having area 17.12%, 38.26%, 44.62%, respectively. The overlay map with the groundwater potential zones in the study area has been found to be helpful for better planning and managing the resources.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 669
Author(s):  
Abid Sarwar ◽  
Sajid Rashid Ahmad ◽  
Muhammad Ishaq Asif Rehmani ◽  
Muhammad Asif Javid ◽  
Shazia Gulzar ◽  
...  

The changing climate and global warming have rendered existing surface water insufficient, which is projected to adversely influence the irrigated farming systems globally. Consequently, groundwater demand has increased significantly owing to increasing population and demand for plant-based foods especially in South Asia and Pakistan. This study aimed to determine the potential areas for groundwater use for agriculture sector development in the study area Lower Dir District. ArcGIS 10.4 was utilized for geospatial analysis, which is referred to as Multi Influencing Factor (MIF) methodology. Seven parameters including land cover, geology, soil, rainfall, underground faults (liniment) density, drainage density, and slope, were utilized for delineation purpose. Considering relative significance and influence of each parameter in the groundwater recharge rating and weightage was given and potential groundwater areas were classified into very high, high, good, and poor. The result of classification disclosed that the areas of 113.10, 659.38, 674.68, and 124.17 km2 had very high, high, good, and poor potential for groundwater agricultural uses, respectively. Field surveys for water table indicated groundwater potentiality, which was high for Kotkay and Lalqila union councils having shallow water table. However, groundwater potentiality was poor in Zimdara, Khal, and Talash, characterized with a very deep water table. Moreover, the study effectively revealed that remote sensing and GIS could be developed as potent tools for mapping potential sites for groundwater utilization. Furthermore, MIF technique could be a suitable approach for delineation of groundwater potential zone, which can be applied for further research in different areas.


Author(s):  
K Choudhary ◽  
M S Boori ◽  
A Kupriyanov

The main objective of this study was to detect groundwater availability for agriculture in the Orenburg, Russia. Remote sensing data (RS) and geographic information system (GIS) were used to locate potential zones for groundwater in Orenburg. Diverse maps such as a base map, geomorphological, geological structural, lithology, drainage, slope, land use/cover and groundwater potential zone were prepared using the satellite remote sensing data, ground truth data, and secondary data. ArcGIS software was utilized to manipulate these data sets. The groundwater availability of the study was classified into different classes such as very high, high, moderate, low and very low based on its hydro-geomorphological conditions. The land use/cover map was prepared using a digital classification technique with the limited ground truth for mapping irrigated areas in the Orenburg, Russia.


Author(s):  
Mihai Valentin Herbei ◽  
Roxana Herbei ◽  
Laura Smuleac ◽  
Tudor Salagean

The Geographical Information Systems technology is used in many fields where the spatial information is very important and relevant, that means in all fields that use a system for saving, analyzing and representing the data which are processed. The aim of this paper is using modern technology for monitoring the environment. Geographical Information System together with remote sensing have a very important role in decision process regarding the environment. Integration of remote sensing images in a Geographical Information System which enables complex spatial analysis is a useful and modern solution for environmental management and decision-making process. Satellite images contain various information that can support environmental monitoring, images that can be analyzed and interpreted in various ways by using the Geographical Information System tools.


Sign in / Sign up

Export Citation Format

Share Document