MicroRNA-221-3p promotes proliferation and invasion in non-small cell lung cancer via targeting Axin2 to regulate Wnt/β-catenin signaling pathway

2020 ◽  
Author(s):  
Jiangnan Zheng ◽  
Lingyun Dong ◽  
Xiaoyun Hu ◽  
Ying Xiao ◽  
Qiaozhen Wu ◽  
...  

Abstract ObjectiveThe mortality rate of lung cancer ranks first in malignant tumors. Among them, non-small cell lung cancer (NSCLC) accounts for about 85% of all lung cancer patients. In this study, we explore part of the mechanism of development and progression of NSCLC.Methods/ ResultsFirstly, there was an increase in microRNA-221-3p (miR-221-3p) expression and a decrease in Axin2 expression in NSCLC tissues using real-time reverse transcription polymerase chain reaction. Further studies showed that miR-221-3p inhibited the expression of Axin2, which negatively regulated the Wnt signaling pathway. With the method of inhibiting and overexpressing the expression of miR-221-3p and/or Axin2 respectively in NSCLC cell lines A549 and H1975, we found that inhibiting the expression of miR-221-3p leaded to a decrease in cell proliferation, migration and invasion, just like the results of overexpressing Axin2. Relatively speaking, overexpression of miR-221-3P in NSCLC cell lines showed the increase of proliferation as well as the decrease of apoptosis. Thus, we knew that miR-221-3p promoted the migration and invasion of NSCLC cells in vitro. What’s more, according to western blot and EdU assay, we demonstrated that overexpression of miR-221-3p inhibited the expression of Axin2 and subsequently activate classical Wnt/β-catenin signaling pathway. At last, a series of methods were used to identify that miR-221-3p inhibited Axin2 expression, increased cell proliferation, invasion and migration, and decreased cell apoptosis.ConclusionOur results suggest that miR-221-3p inhibits the expression of Axin2 and indirectly activates the typical Wnt/β-catenin signaling pathway, thus promoting tumor proliferation and invasion in NSCLC.

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yunpeng Liu ◽  
Xingyu Lin ◽  
Shiyao Zhou ◽  
Peng Zhang ◽  
Guoguang Shao ◽  
...  

Abstract Background: The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled. Methods: HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells. Results: Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC. Conclusion: These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.


2019 ◽  
Vol 14 (1) ◽  
pp. 201-207
Author(s):  
Si-Jia Yang ◽  
Jia-Lu Weng ◽  
Bin Wei ◽  
Xue-Kui Du

AbstractTo investigate how long non-coding RNAs DUXAP8 (LncRNA DUXAP8) influence the cell proliferation and invasion of non-small-cell lung cancer (NSCLC), we detected the expression levels of LncRNA DUXAP8 in lung cancer (LC) tissues, 4 LC-related cell lines (A549, SPC-A1, SK-MES-1 and NCI-H1299) and normal lung tissues via quantitative real-time PCR (qRT-PCR). Compared with normal lung tissue, LncRNA DUXAP8 was significantly up-regulated in NSCLC, especially in stage III / IV and diameter ≥ 3cm of lung cancer. Among 4 lung cancer cell lines, LncRNA DUXAP8 in A549 cells was the highest (P<0.001). Construction of LncRNA DUXAP8 overexpression and LncRNA DUXAP8 knockout in A549 cell lines was further performed and subsequently injected into nude mice to build an in vivo tumor xenograft model. The results indicated that LncRNA DUXAP8 overexpression significantly promoted the A549 cells’ proliferation, enhanced invasion and induced tumor growth. Conversely, LncRNA DUXAP8 knockout significantly suppressed A549 cells’ proliferation, weakened invasion and inhibited tumor growth. Taken together, our results imply that LncRNA DUXAP8 is a potential regulatory molecular marker in non-small-cell lung cancer.


2020 ◽  
Vol 40 (5) ◽  
Author(s):  
Wenguang Pang ◽  
Fengliu Huang ◽  
Xin Zhang ◽  
Min Ye ◽  
Yanming Huang ◽  
...  

Abstract Objective: Non-small cell lung cancer (NSCLC) continues to top the list of cancer mortalities worldwide. Early diagnosis and therapeutic interventions targeting NSCLC is becoming the world’s significant challenge. Circular RNAs (circRNAs) are emerging as a group of potential cancer biomarkers. Materials and methods: Quantitative real-time PCR (qRT-PCR) was employed to examine the expression of circ_0072309 in NSCLC tissues and cell lines. Cell counting kit 8 (CCK-8), wound healing and Transwell assays were used to analyze cell proliferation, migration and invasion in A549 and H1299 cells. The relationship between circ_0072309 and miR-580-3 was analyzed by Luciferase reporter and RNA pull down assays. Results: We screened circ_0072309 from Gene Expression Omnibus and found that circ_0072309 was lowly expressed in NSCLC tissues and cell lines. The transfection of circ_0072309-overexpressing vector significantly suppressed the cell proliferation, migration and invasion in A549 and H1299 cells. We predicted that miR-580-3p is a target of circ_0072309 by using publicly available bioinformatic algorithms Circinteractome tool and confirmed that circ_0072309 directly bound to miR-580-3p. Furthermore, the addition of miR-580-3p mitigated the blockage of cell proliferation, migration and invasion induced by circ_0072309. Conclusions: These data showed that circ_0072309 inhibits the progression of NSCLC progression via blocking the expression of miR-580-3p. These findings revealed the anti-tumor role of circ_0072309 during the development of NSCLC and provided a novel diagnostic biomarker and potential therapy for NSCLC.


Sign in / Sign up

Export Citation Format

Share Document