scholarly journals Long Term Spatio-Temporal Trends In Aerosol Optical Depth And Its Relationship With Enhanced Vegetation Index And Meteorological Parameters Over South Asia

Author(s):  
Salman Tariq ◽  
Fazzal Qayyum ◽  
Zia Ul-Haq ◽  
Usman Mehmood

Abstract Satellite-based Aerosol optical depth (AOD) is columnar light extinction by aerosol absorption and scattering and has become the most important variable for the assessment of the spatiotemporal distribution of aerosols at a regional and global level. In this paper, we have used AOD observations from multi-angle imaging spectroradiometer (MISR), moderate resolution imaging spectroradiometer (MODIS) and sea viewing wide field-of-view Sensor (SeaWiFS). We have observed the association of AOD with enhanced vegetation index (EVI) and meteorological variables (temperature (TEMP), WS and relative humidity (RH)). The findings show that AOD in eastern Pakistan is higher than in the western Pakistan due to increase in population density and biomass burning. Mean annual peak AOD (˃0.7) has been observed over the IGB region because of the significant increase in economical, industrial and agricultural activities. The highest seasonal mean AOD (0.8) has been seen over Bihar, India during the winter season. However, the mean AOD over eastern Pakistan is maximum in both monsoon and post-monsoon season but relatively low in pre-monsoon and winter. The higher mean AOD anomaly value is found to be 0.2 over eastern Pakistan and western India. In northeastern Pakistan and central India, AOD and RH are positively correlated (R ˃0.54) while negatively correlated over southwestern Pakistan. AOD is negatively correlated (R= ~-0.3) with EVI over northeastern and southeastern Pakistan. The correlation coefficient (R) obtained among Aqua and Terra AOD is 0.97 over south Asia. The satellite observations of Aqua-AOD was also compared with SeaWiFS and MISR AOD.

2012 ◽  
Vol 5 (2) ◽  
pp. 2169-2220 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


2020 ◽  
Vol 13 (11) ◽  
pp. 5955-5975
Author(s):  
Hai Zhang ◽  
Shobha Kondragunta ◽  
Istvan Laszlo ◽  
Mi Zhou

Abstract. The Advanced Baseline Imager (ABI) on board the Geostationary Operational Environmental Satellite-R (GOES-R) series enables retrieval of aerosol optical depth (AOD) from geostationary satellites using a multiband algorithm similar to those of polar-orbiting satellites' sensors, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS). However, this work demonstrates that the current version of GOES-16 (GOES-East) ABI AOD has diurnally varying biases due to limitations in the land surface reflectance relationships between the 0.47 µm band and the 2.2 µm band and between the 0.64 µm band and 2.2 µm band used in the ABI AOD retrieval algorithm, which vary with the Sun–satellite geometry and NDVI (normalized difference vegetation index). To reduce these biases, an empirical bias correction algorithm has been developed based on the lowest observed ABI AOD of an adjacent 30 d period and the background AOD at each time step and at each pixel. The bias correction algorithm improves the performance of ABI AOD compared to AErosol RObotic NETwork (AERONET) AOD, especially for the high and medium (top 2) quality ABI AOD. AOD data for the period 6 August to 31 December 2018 are used to evaluate the bias correction algorithm. After bias correction, the correlation between the top 2 quality ABI AOD and AERONET AOD improves from 0.87 to 0.91, the mean bias improves from 0.04 to 0.00, and root-mean-square error (RMSE) improves from 0.09 to 0.05. These results for the bias-corrected top 2 qualities ABI AOD are comparable to those of the corrected high-quality ABI AOD. By using the top 2 qualities of ABI AOD in conjunction with the bias correction algorithm, the areal coverage of ABI AOD is increased by about 100 % without loss of data accuracy.


2019 ◽  
Vol 99 ◽  
pp. 01003
Author(s):  
Athina Avgousta Floutsi ◽  
Marios Bruno Korras Carraca ◽  
Christos Matsoukas ◽  
Nikos Hatzianastassiou ◽  
George Biskos

Central and South Asia are regions of particular interest for studying atmospheric aerosols, being among the largest sources of desert dust aerosols globally. In this study we use the newest collection (C061) of MODIS - Aqua aerosol optical depth (AOD) at 550 nm and Ångström exponent (a) at 412/470 nm over the 15-year period between 2002 and 2017, providing the longest analyzed dataset for this region. According to our results, during spring and summer, high aerosol load (AOD up to 1.2) consisting of coarse desert dust particles, as indicated by a values as low as 0.15, is observed over the Taklamakan, Thar and Registan deserts and the region between the Aral and Caspian seas. The dust load is much lower during winter and autumn (lower AOD and higher a values compared to the other seasons). The interannual variation of AOD and a suggests that the dust load exhibits large decreasing trends (AOD slopes down to -0.22, a slopes up to 0.47 decade-1) over the Thar desert and large increasing trends between the Aral and Caspian seas (AOD and a slopes up to 0.23 decade-1 and down to -0.61 decade-1, respectively.) The AOD data are evaluated against AERONET surface-based measurements. Generally, MODIS and AERONET data are in good agreement with a correlation coefficient (R) equal to 0.835.


2016 ◽  
Vol 9 (11) ◽  
pp. 5575-5589 ◽  
Author(s):  
Yerong Wu ◽  
Martin de Graaf ◽  
Massimo Menenti

Abstract. Aerosol optical depth (AOD) product retrieved from MODerate Resolution Imaging Spectroradiometer (MODIS) measurements has greatly benefited scientific research in climate change and air quality due to its high quality and large coverage over the globe. However, the current product (e.g., Collection 6) over land needs to be further improved. The is because AOD retrieval still suffers large uncertainty from the surface reflectance (e.g., anisotropic reflection) although the impacts of the surface reflectance have been largely reduced using the Dark Target (DT) algorithm. It has been shown that the AOD retrieval over dark surface can be improved by considering surface bidirectional distribution reflectance function (BRDF) effects in previous study. However, the relationship of the surface reflectance between visible and shortwave infrared band that applied in the previous study can lead to an angular dependence of the AOD retrieval. This has at least two reasons. The relationship based on the assumption of isotropic reflection or Lambertian surface is not suitable for the surface bidirectional reflectance factor (BRF). However, although the relationship varies with the surface cover type by considering the vegetation index NDVISWIR, this index itself has a directional effect and affects the estimation of the surface reflection, and it can lead to some errors in the AOD retrieval. To improve this situation, we derived a new relationship for the spectral surface BRF in this study, using 3 years of data from AERONET-based Surface Reflectance Validation Network (ASRVN). To test the performance of the new algorithm, two case studies were used: 2 years of data from North America and 4 months of data from the global land. The results show that the angular effects of the AOD retrieval are largely reduced in most cases, including fewer occurrences of negative retrievals. Particularly, for the global land case, the AOD retrieval was improved by the new algorithm compared to the previous study and MODIS Collection 6 DT algorithm, with the increase of 2.0 and 4.5 % AOD retrievals falling within the expected accuracy envelope ±(0.05 + 15 %), respectively. This implies that the users can get more accurate data without angular bias, i.e., more meaningful AOD data.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Sunmin Park ◽  
Hesham El-Askary ◽  
Ismail Sabbah ◽  
Hanbin Kwak ◽  
Anup K. Prasad ◽  
...  

We investigate the temporal characteristics of major air pollutants collected from 44 air quality stations over the city of Seoul, Korea, namely, nitrogen dioxide, carbon monoxide, particular matter at 10 microns, and sulfur dioxide (SO2) between 2000 and 2009. The corresponding satellite datasets, namely, aerosol optical depth (AODsat), Ångström exponent, and fine mode fraction, collected from moderate resolution imaging spectroradiometer (MODIS) as well as the Aeronet ground aerosol optical depth (AODaeronet), have been analyzed. Pollutants’ seasonal effect has been inferred from the precipitation and temperature. The four pollutants under study show varying temporal characteristics with different annual mean concentration patterns. The monthly mean of mentioned pollutants all show similar low concentrations during the summer season and high concentrations during the winter season. We found that pollution is strongly linked to temperature and precipitation variability, especially during the fall season. Satellite data analysis provides information on the pollutants origin whether of natural or anthropogenic type. Our results indicate that the anthropogenic aerosol is dominant in the summer season even though the concentration was lower than the other seasons. AODaeronetand Ångström exponent indicated high positive and negative correlation coefficients with PM10, 0.60, and −0.45, respectively. Both small and large sizes of aerosols existed in 2007; however coarse size of aerosols was the primary component in 2002.


Author(s):  
Yanqing Xie ◽  
Zhengqiang Li ◽  
Jie Guang ◽  
Weizhen Hou ◽  
Abdus Salam ◽  
...  

2016 ◽  
Vol 8 (12) ◽  
pp. 998 ◽  
Author(s):  
Guosheng Zhong ◽  
Xiufeng Wang ◽  
Hiroshi Tani ◽  
Meng Guo ◽  
Anthony Chittenden ◽  
...  

2012 ◽  
Vol 5 (7) ◽  
pp. 1761-1778 ◽  
Author(s):  
A. M. Sayer ◽  
N. C. Hsu ◽  
C. Bettenhausen ◽  
M.-J. Jeong ◽  
B. N. Holben ◽  
...  

Abstract. This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-yr (1997–2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where SeaWiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record is suitable for quantitative scientific use.


Sign in / Sign up

Export Citation Format

Share Document