scholarly journals The Reinforcement Mechanisms of Graphene Oxide in Laser Directed Energy Deposition Fabricated Metal and Ceramic Matrix Composites: A Comparison Study

Author(s):  
Yunze Li ◽  
Dongzhe Zhang ◽  
Zhipeng Ye ◽  
Gaihua Ye ◽  
Rui He ◽  
...  

Abstract Carbon-based nanomaterials mainly including carbon nanotubes (CNTs), graphene, and graphene oxide (GO) have superior properties of low density, outstanding strength, and high hardness. Compared with ceramic reinforcements, a small amount of carbon-based nanomaterials can significantly improve the mechanical properties of metal matrix composites (MMCs) and ceramic matrix composites (CMCs). However, CNTs and graphite always aggregate or degrade during the fabrication with a high temperature, especially in MMCs. GO has the advantages of easier to be dispersed in other materials and better high-temperature stability. Laser directed energy deposition (DED), has been used to fabricate GO-MMCs and GO-CMCs due to the unique capabilities of coating, remanufacturing, and producing functionally graded materials. Laser DED, as a fusion manufacturing process, could fully melt the material powders, which could refine the microstructure and increase the density and mechanical properties. However, GO could react with matrix materials at high temperatures. The survival, degradation, and reactions of GO in laser DED fabricated GO-MMCs and GO-CMCs are still unknown. There is also no investigation on the reinforcement mechanisms of GO in metal matrix materials and ceramic matrix materials in the laser DED process. In this study, GO reinforced Ti (GO-Ti) and GO reinforced zirconia toughened alumina (GO-ZTA) parts were fabricated by laser DED process. Raman spectrum, XRD analysis, and EDS analysis have been applied to investigate the forms of GO in both DED fabricated GO-MMCs and GO-CMCs. The reinforcement mechanisms of GO on microhardness and compressive properties of MMCs and CMCs have been analyzed.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1581 ◽  
Author(s):  
Jianjun Sha ◽  
Shouhao Wang ◽  
Jixiang Dai ◽  
Yufei Zu ◽  
Wenqiang Li ◽  
...  

In order to understand the influence of the mechanisms of ZrC nanoparticles on the high-temperature mechanical properties of C-SiC ceramic matrix composites, the mechanical properties were measured from room temperature (RT) to 1600 °C under vacuum. The microstructures features were characterized by scanning electron microscopy. In comparison with the composites without ZrC nanoparticles, the ZrC-modified composite presented better mechanical properties at all temperatures, indicating that the mechanical properties could be improved by the ZrC nanoparticles. The ZrC nanoparticles could reduce the residual silicon and improve the microstructure integrity of composite. Furthermore, the variation of flexural strength and the flexural modulus showed an asynchronous trend with the increase of temperature. The flexural strength reached the maximum value at 1200 °C, but the highest elastic modulus was obtained at 800 °C. The strength increase was ascribed to the decrease of the thermally-induced residual stresses. The degradation of mechanical properties was observed at 1600 °C because of the microstructure deterioration and the formation of strongly bonded fiber–matrix interface. Therefore, it is concluded that the high temperature mechanical properties under vacuum were related to the consisting phase, the matrix microstructure, and the thermally-induced residual stresses.


Author(s):  
A. Szweda ◽  
T. E. Easler ◽  
D. R. Petrak ◽  
V. A. Black

Continuous fiber ceramic composites (CFCCs) are being considered as high temperature structural materials for gas turbine applications due to their high temperature capability, toughness, and durability. Polymer impregnation and pyrolysis (PIP) derived CFCCs are one class of these materials that can be fabricated using widely available polymer composite processing methods. This paper will discuss the general PIP fabrication process and thermo-mechanical properties of these materials, and show examples of complex prototype gas turbine components that have been fabricated and evaluated.


2008 ◽  
Vol 368-372 ◽  
pp. 1778-1781 ◽  
Author(s):  
Cengiz Kaya ◽  
Figen Kaya

A combined technique comprising electrophoretic deposition (EPD) and low-pressure infiltration was used for the fabrication of multi-layer woven mullite ceramic fabric reinforced alumina ceramic matrix composites (CMCs) for high temperature applications. Two different interface materials, NdPO4 and ZrO2 were synthesised and used for coating the woven ceramic fibres by EPD. The manufactured CMC components with suitable interface material are targeted for use at 1300-1400 oC in an oxidising atmosphere and have shown very good mechanical properties in multi-layer plate forms. Damage mechanisms, such as debonding, fibre fracture, delamination and matrix cracking within the composite plates subjected to flexural loading are analysed. It is shown that the composites with NdPO4 interface and 40 vol.% fibre loading have better mechanical properties in terms of strength and damage-tolerant behaviour. The final components produced are considered to be suitable for use as shroud seals and insulating layers for combustor chambers in aircraft engines.


Sign in / Sign up

Export Citation Format

Share Document