scholarly journals A Novel Approach to the Prediction of Biomagnification Factors Based on Molecular Structure Images

Author(s):  
Ming Cai Zhang ◽  
Ling Zhu ◽  
Hong Lin Zhai ◽  
Ke Xin Bi ◽  
Bing Qiang Zhao

Abstract Although biomagnification factor (BMF) is an important index of pollutants in food chains, its experimental determination is quite tedious. In this contribution, as the feature information, Tchebichef moments (TMs) were calculated directly from the molecular structural images, and then stepwise regression was employed to establish the prediction model of the logBMF. The proposed approach was applied to the logBMF prediction of organochlorine pollutants, and the correlation coefficient with leave-one-out cross-validation (Rcv) of the obtained model was 0.96, and the root mean square error (RMSEp) for the external independent test set was 0.21. Compared with traditional two-dimensional (2D) quantitative structure-property relationship (QSPR) as well as the reported method, the proposed approach was more simple, accurate and reliable. This study not only obtained the satisfactory prediction model for organochlorine pollutants, but also provided another effective approach to QSPR research.

2021 ◽  
Author(s):  
Ming Cai Zhang ◽  
Hong Lin Zhai ◽  
Ke Xin Bi ◽  
Bin Qiang Zhao ◽  
Hai Ping Shao

Abstract Biomagnification factor (BMF) is an important index of pollutants in food chains but its experimental determination is quite tedious. In this contribution, as the feature descriptors of molecular information, Tchebichef moments (TMs) were calculated from their structural images. Then stepwise regression was employed to establish the prediction model for the logBMF of organochlorine pollutants. The correlation coefficient with leave-one-out cross-validation (Rcv) was 0.9570 and the correlation coefficient of prediction (Rp) for external independent test set was 0.9594. Compared with traditional two-dimensional (2D) quantitative structure-property relationship (QSPR) and the reported augmented multivariate image analysis applied to QSPR (aug-MIA-QSPR), the proposed approach is more simple, accurate and reliable. This study not only obtained the model with better stability and predictive ability for the BMF of organochlorine pollutants, but also provided another effective approach to QSPR research.


2021 ◽  
Author(s):  
Ming Cai Zhang ◽  
Hong Lin Zhai ◽  
Ke Xin Bi ◽  
Bin Qiang Zhao ◽  
Hai Ping Shao

Abstract Biomagnification factor (BMF) is an important index of pollutants in food chains but its experimental determination is quite tedious. In this contribution, as the feature descriptors of molecular information, Tchebichef moments (TMs) were calculated from their structural images. Then stepwise regression was employed to establish the prediction model for the logBMF of organochlorine pollutants. The correlation coefficient with leave-one-out cross-validation (Rcv) was 0.9570; the correlation coefficient of prediction (Rp) and root mean square error (RMSEp) for external independent test set reached 0.9594 and 0.2129, respectively. Compared with traditional two-dimensional (2D) quantitative structure-property relationship (QSPR) and the reported augmented multivariate image analysis applied to QSPR (aug-MIA-QSPR), the proposed approach is more simple, accurate and reliable. This study not only obtained the model with better stability and predictive ability for the BMF of organochlorine pollutants, but also provided another effective approach to QSPR research.


2011 ◽  
Vol 284-286 ◽  
pp. 197-200 ◽  
Author(s):  
Rui Wang ◽  
Jun Cheng Jiang ◽  
Yong Pan

A quantitative structure-property relationship (QSPR) model was proposed for predicting electric spark sensitivity of 39 nitro arenes. The genetic function approximation (GFA) was employed to select the descriptors that have significant contribution to electric spark sensitivity from various descriptors and for fitting the relationship existed between the selected 8 descriptors and electric spark sensitivity. The correlation coefficients (R2) together with correlation coefficient of the leave-one-out cross validation (Q2CV) of the model are 0.924 and 0.873, respectively. The model is highly statistically significant, and the robustness as well as internal prediction capability of which is satisfactory. The results show that the predicted electric spark sensitivity values are in good agreement with the experimental data.


Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2017 ◽  
Author(s):  
Aron Huckaba ◽  
sadig aghazada ◽  
iwan zimmermann ◽  
giulia grancini ◽  
natalia gasilova ◽  
...  

The straightforward synthesis and photophysical properties of a new series of heteroleptic Iridium (III) bis(2-arylimidazole) picolinate complexes is reported. Each complex has been characterized by NMR, UV-Vis, cyclic voltammetry, and the emissive properties of each is described. By systematically modifying first the cyclometallating aryl group on the arylimidazole ligand and then the picolinate ligand, the ramifications of ligand modification in these complexes was better understood through the construction of a structure-property relationship.


2008 ◽  
Vol 59 (11) ◽  
Author(s):  
Adrian Beteringhe ◽  
Ana Cristina Radutiu ◽  
Titus Constantinescu ◽  
Luminita Patron ◽  
Alexandru T. Balaban

In a preceding study, the molecular hydrophobicity (RM0) was determined experimentally from reverse-phase thin-layer chromatography data for several substituted phenols and 2-(aryloxy-a-acetyl)-phenoxathiin derivatives, obtained from the corresponding phenoxides and 2-(a-bromoacetyl)-phenoxathiin. QSPR correlations for RM0 were explored using four calculated molecular descriptors: the water solubility parameter (log Sw), log P, the Gibbs energy of formation (DGf), and the aromaticity index (HOMA). Triparametric correlations do not improve substantially the biparametric correlation of RM0 in terms of log Sw and HOMA.


2020 ◽  
Vol 27 (28) ◽  
pp. 4584-4592 ◽  
Author(s):  
Avik Khan ◽  
Baobin Wang ◽  
Yonghao Ni

Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.


2018 ◽  
Vol 21 (7) ◽  
pp. 533-542 ◽  
Author(s):  
Neda Ahmadinejad ◽  
Fatemeh Shafiei ◽  
Tahereh Momeni Isfahani

Aim and Objective: Quantitative Structure- Property Relationship (QSPR) has been widely developed to derive a correlation between chemical structures of molecules to their known properties. In this study, QSPR models have been developed for modeling and predicting thermodynamic properties of 76 camptothecin derivatives using molecular descriptors. Materials and Methods: Thermodynamic properties of camptothecin such as the thermal energy, entropy and heat capacity were calculated at Hartree–Fock level of theory and 3-21G basis sets by Gaussian 09. Results: The appropriate descriptors for the studied properties are computed and optimized by the genetic algorithms (GA) and multiple linear regressions (MLR) method among the descriptors derived from the Dragon software. Leave-One-Out Cross-Validation (LOOCV) is used to evaluate predictive models by partitioning the total sample into training and test sets. Conclusion: The predictive ability of the models was found to be satisfactory and could be used for predicting thermodynamic properties of camptothecin derivatives.


Sign in / Sign up

Export Citation Format

Share Document