scholarly journals An Integrated Platform Supporting Semantic Similarity Score Calculation and Reproducibility

Author(s):  
Gaston K. Mazandu ◽  
Kenneth Opap ◽  
Funmilayo Makinde ◽  
Victoria Nembaware ◽  
Francis Agamah ◽  
...  

Abstract During the last decade, we witnessed an exponential rise of datasets from heterogeneous sources. Ontologies are playing an essential role in consistently describing domain concepts, data harmonization and integration to support large-scale integrative analysis and semantic interoperability in knowledge sharing. Several semantic similarity (SS) measures have been suggested to enable the integration of rich ontology structures into automated reasoning and inference. However, there is no tool that exhaustively implements these measures and existing tools are generally Gene Ontology specific, do not implement several models suggested in the WordNet context and are not equipped to properly deal with frequent ontology updates. We introduce a Python SS measure library (PySML), which tackles issues related to current SS tools, providing a portable and expandable tool to a broad computational audience. This empowers users to manipulate SS scores from several applications for any ontology version and file format. PySML is a flexible tool enabling the implementation of all existing semantic similarity models, resolving issues related to computation, reproducibility and re-usability of SS scores.

2011 ◽  
Vol 09 (06) ◽  
pp. 681-695 ◽  
Author(s):  
MARCO A. ALVAREZ ◽  
CHANGHUI YAN

Existing methods for calculating semantic similarities between pairs of Gene Ontology (GO) terms and gene products often rely on external databases like Gene Ontology Annotation (GOA) that annotate gene products using the GO terms. This dependency leads to some limitations in real applications. Here, we present a semantic similarity algorithm (SSA), that relies exclusively on the GO. When calculating the semantic similarity between a pair of input GO terms, SSA takes into account the shortest path between them, the depth of their nearest common ancestor, and a novel similarity score calculated between the definitions of the involved GO terms. In our work, we use SSA to calculate semantic similarities between pairs of proteins by combining pairwise semantic similarities between the GO terms that annotate the involved proteins. The reliability of SSA was evaluated by comparing the resulting semantic similarities between proteins with the functional similarities between proteins derived from expert annotations or sequence similarity. Comparisons with existing state-of-the-art methods showed that SSA is highly competitive with the other methods. SSA provides a reliable measure for semantics similarity independent of external databases of functional-annotation observations.


2012 ◽  
Vol 13 (S4) ◽  
Author(s):  
Marco Falda ◽  
Stefano Toppo ◽  
Alessandro Pescarolo ◽  
Enrico Lavezzo ◽  
Barbara Di Camillo ◽  
...  

2014 ◽  
Vol 155 (26) ◽  
pp. 1011-1018 ◽  
Author(s):  
György Végvári ◽  
Edina Vidéki

Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy beween organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants’ life. Orv. Hetil., 2014, 155(26), 1011–1018.


2019 ◽  
Vol 26 (1) ◽  
pp. 38-52 ◽  
Author(s):  
Dat Duong ◽  
Wasi Uddin Ahmad ◽  
Eleazar Eskin ◽  
Kai-Wei Chang ◽  
Jingyi Jessica Li

2018 ◽  
Author(s):  
Valerie Wood ◽  
Antonia Lock ◽  
Midori A. Harris ◽  
Kim Rutherford ◽  
Jürg Bähler ◽  
...  

AbstractThe first decade of genome sequencing stimulated an explosion in the characterization of unknown proteins. More recently, the pace of functional discovery has slowed, leaving around 20% of the proteins even in well-studied model organisms without informative descriptions of their biological roles. Remarkably, many uncharacterized proteins are conserved from yeasts to human, suggesting that they contribute to fundamental biological processes. To fully understand biological systems in health and disease, we need to account for every part of the system. Unstudied proteins thus represent a collective blind spot that limits the progress of both basic and applied biosciences.We use a simple yet powerful metric based on Gene Ontology (GO) biological process terms to define characterized and uncharacterized proteins for human, budding yeast, and fission yeast. We then identify a set of conserved but unstudied proteins in S. pombe, and classify them based on a combination of orthogonal attributes determined by large-scale experimental and comparative methods. Finally, we explore possible reasons why these proteins remain neglected, and propose courses of action to raise their profile and thereby reap the benefits of completing the catalog of proteins’ biological roles.


2015 ◽  
Vol 12 (4) ◽  
pp. 1235-1253 ◽  
Author(s):  
Shu-Bo Zhang ◽  
Jian-Huang Lai

Measuring the semantic similarity between pairs of terms in Gene Ontology (GO) can help to compare genes that can not be compared by other computational methods. In this study, we proposed an integrated information-based similarity measurement (IISM) to calculate the semantic similarity between two GO terms by taking into account multiple common ancestors that they share, and aggregating the semantic information and depth information of the non-redundant common ancestors. Our method searches for non-redundant common ancestors in an effective way. Validation experiments were conducted on both gene expression dataset and pathway dataset, and the experimental results suggest the superiority of our method against some existing methods.


2017 ◽  
Author(s):  
Dat Duong ◽  
Wasi Uddin Ahmad ◽  
Eleazar Eskin ◽  
Kai-Wei Chang ◽  
Jingyi Jessica Li

AbstractThe Gene Ontology (GO) database contains GO terms that describe biological functions of genes. Previous methods for comparing GO terms have relied on the fact that GO terms are organized into a tree structure. In this paradigm, the locations of two GO terms in the tree dictate their similarity score. In this paper, we introduce two new solutions for this problem, by focusing instead on the definitions of the GO terms. We apply neural network based techniques from the natural language processing (NLP) domain. The first method does not rely on the GO tree, whereas the second indirectly depends on the GO tree. In our first approach, we compare two GO definitions by treating them as two unordered sets of words. The word similarity is estimated by a word embedding model that maps words into an N-dimensional space. In our second approach, we account for the word-ordering within a sentence. We use a sentence encoder to embed GO definitions into vectors and estimate how likely one definition entails another. We validate our methods in two ways. In the first experiment, we test the model’s ability to differentiate a true protein-protein network from a randomly generated network. In the second experiment, we test the model in identifying orthologs from randomly-matched genes in human, mouse, and fly. In both experiments, a hybrid of NLP and GO-tree based method achieves the best classification accuracy.Availabilitygithub.com/datduong/NLPMethods2CompareGOterms


2016 ◽  
Author(s):  
Nehme El-Hachem ◽  
Deena M.A. Gendoo ◽  
Laleh Soltan Ghoraie ◽  
Zhaleh Safikhani ◽  
Petr Smirnov ◽  
...  

ABSTRACTIdentification of drug targets and mechanism of action (MoA) for new and uncharacterlzed drugs is important for optimization of drug efficacy. Current MoA prediction approaches largely rely on prior information including side effects, therapeutic indication and/or chemo-informatics. Such information is not transferable or applicable for newly identified, previously uncharacterlzed small molecules. Therefore, a shift in the paradigm of MoA predictions is necessary towards development of unbiased approaches that can elucidate drug relationships and efficiently classify new compounds with basic input data. We propose a new integrative computational pharmacogenomlc approach, referred to as Drug Network Fusion (DNF), to infer scalable drug taxonomies that relies only on basic drug characteristics towards elucidating drug-drug relationships. DNF is the first framework to integrate drug structural information, high-throughput drug perturbation and drug sensitivity profiles, enabling drug classification of new experimental compounds with minimal prior information. We demonstrate that the DNF taxonomy succeeds in identifying pertinent and novel drug-drug relationships, making it suitable for investigating experimental drugs with potential new targets or MoA. We highlight how the scalability of DNF facilitates identification of key drug relationships across different drug categories, and poses as a flexible tool for potential clinical applications in precision medicine. Our results support DNF as a valuable resource to the cancer research community by providing new hypotheses on the compound MoA and potential insights for drug repurposlng.


Sign in / Sign up

Export Citation Format

Share Document