scholarly journals Development of Rill Erosion On Bare Sloping Farmland Under Natural Rainfall Conditions

Author(s):  
Jingling Zhang ◽  
Lili Zhou ◽  
Donghao Huang

Abstract Rill erosion is an important type of soil erosion and provide a basis for preventing and controlling soil loss on sloping farmland. This study was conducted in a standard runoff plot of bare soil (20 m length, 5 m width with a slope of 10 degrees) to monitored runoff and sediment processes during two continuous and two intermittent natural rainfall events, and observed the rill morphological characteristics after multiple rainfall conditions. We observed the runoff and sediment processes presented a pattern of multi-peaks for continuous rainfall events, and a pattern of single or two peaks during two intermittent rainfall events. The sediment yield rate with instantaneous rainfall intensity and runoff rate exhibited a peak lag phenomenon with 1–6 min. After multiple rainfall events, rill were identified as strip-shaped, V-shaped, and tree-branched distribution, and rills were mainly distributed in 5–20 cm width and 0–10 cm depth, and the mean rill length, width and depth increased 2.27, 0.30 and 0.16 times compared to the initial slope (R0). The side-wall collapse erosion was mostly greater than downcutting erosion in the slope section I, II and III. In conclusion, this study help to understanding the slope runoff and erosion mechanisms, and provide a scientific basis for soil erosion model on sloping farmland.

2021 ◽  
Author(s):  
Yongcai Lou ◽  
Zhaoliang Gao ◽  
Fuyu Zhou ◽  
Jianwei Ai ◽  
Yunfeng Cen ◽  
...  

Abstract. The soil erosion of the spoil tips seriously threatens the safety of people's lives and property and the surrounding ecological environment. Rill erosion is an important cause of water and soil loss in spoil tips. This study was conducted to investigate the process of rill erosion on the slopes of spoil tips, changes in the morphological characteristics of rills and the mechanisms of rill erosion. A Field runoff plot (5 m long, 1 m wide and 0.5 m deep) with three inflow rates (1.6, 2 and 2.4 mm min−1) and three typical slopes (28°, 32° and 36°) was used for runoff simulation experiments. The results showed that, compared with the slope and scouring times, inflow rate was the most important factor affecting rill erosion of the spoil tips. The development of rill mainly goes through three stages: the rill formation stage, the rill development stage and the rill adjustment stage. The overall predominance of parallel-shaped rills at all experiments suggested that the formation of rills was dominated by concentrated runoff. The average rill depth was the best indicator of rill morphology for evaluating rill erosion. The flow regimes under the experimental conditions were supercritical-laminar flow and supercritical-transition flow. The Reynolds number was the best hydraulic parameter for predicting rill erosion. The stream power was the best hydrodynamic parameter to describe rill erosion mechanism. These results contributed to further revealing the rill erosion mechanism on the slope of the spoil tips and provided a scientific basis for its soil erosion control.


2019 ◽  
Vol 67 (4) ◽  
pp. 297-304 ◽  
Author(s):  
Gabriel Minea ◽  
Gabriela Ioana-Toroimac ◽  
Gabriela Moroşanu

Abstract This paper aimed to investigate the dominant runoff processes (DRP’s) at plot-scale in the Curvature Subcarpathians under natural rainfall conditions characteristic for Romania’s temperate environment. The study was based on 32 selected rainfall-runoff events produced during the interval April–September (2014–2017). By comparing water balance on the analyzed Luvisol plots for two types of land use (grassland vs. bare soil), we showed that DRP’s are mostly formed by Hortonian Overland Flow (HOF), 47% vs. 59% respectively. On grassland, HOF is followed by Deep Percolation (DP, 31%) and Fast Subsurface Flow (SSF, 22%), whereas, on bare soil, DP shows a higher percentage (38%) and SSF a lower one (3%), which suggests that the soil-root interface controls the runoff generation. Concerning the relationship between antecedent precipitation and runoff, the study indicated the nonlinearity of the two processes, more obvious on grassland and in drought conditions than on bare soil and in wet conditions (as demonstrated by the higher runoff coefficients). Moreover, the HOF appeared to respond differently to rainfall events on the two plots - slightly longer lag-time, lower discharge and lower volume on grassland - which suggests the hydrologic key role of vegetation in runoff generation processes.


2008 ◽  
Vol 24 (3) ◽  
pp. 277-283 ◽  
Author(s):  
Zhanyu Zhang ◽  
Guohua Zhang ◽  
Changqing Zuo ◽  
Xiaoyu Pi

1997 ◽  
Vol 77 (4) ◽  
pp. 669-676 ◽  
Author(s):  
S. C. Nolan ◽  
L. J. P. van Vliet ◽  
T. W. Goddard ◽  
T. K. Flesch

Interpreting soil loss from rainfall simulators is complicated by the uncertain relationship between simulated and natural rainstorms. Our objective was to develop and test a method for estimating soil loss from natural rainfall using a portable rainfall simulator (1 m2 plot size). Soil loss from 12 rainstorms was measured on 144-m2 plots with barley residue in conventional tillage (CT), reduced tillage (RT) and zero tillage (ZT) conditions. A corresponding "simulated" soil loss was calculated by matching the simulator erosivity to each storm's erosivity. High (140 mm h−1) and low (60 mm h−1) simulation intensities were examined. The best agreement between simulated and natural soil loss occurred using the low intensity, after making three adjustments. The first was to compensate for the 38% lower kinetic energy of the simulator compared with natural rain. The second was for the smaller slope length of the simulator plot. The third was to begin calculating simulator erosivity only after runoff began. After these adjustments, the simulated soil loss over all storms was 99% of the natural soil loss for CT, 112% for RT and 95% for ZT. Our results show that rainfall simulators can successfully estimate soil loss from natural rainfall events. Key words: Natural rainfall events, simulated rainfall, erosivity, tillage


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

<p><strong>Straw mulch impact on soil properties and initial soil erosion processes in the maize field</strong></p><p>Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic</p><p>University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia</p><p>(*correspondence to Ivan Dugan: [email protected])</p><p>Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha<sup>-1</sup> under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays L.) field in Blagorodovac, Croatia (45°33’N; 17°01’E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha<sup>-1</sup>), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h<sup>-1</sup>, for 30 min, over 0.785 m<sup>2</sup> plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p < 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p > 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha<sup>-1</sup>, when extrapolated, reached as high as 5.07 t ha<sup>-1 </sup>in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.</p><p><strong>Key words: straw mulch, </strong>rainfall simulation, soil water erosion</p><p><strong>Acknowledgment</strong></p><p>This work was supported by Croatian Science Foundation through the project "Soil erosion and degradation in Croatia" (UIP-2017-05-7834) (SEDCRO).</p><p><strong>Literature</strong></p><p>Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.</p><p>Kisic, I., Bogunovic, I., Birkás, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.</p>


2021 ◽  
Author(s):  
Romana Kubínová ◽  
Petr Kavka ◽  
Martin Neumann ◽  
Jan-František Kubát

<p>In this contribution the particle size distributions of the soil sediment obtained from soil erosion experiments were analysed. All the tests were done on arable topsoil’s, separately the size distribution of the soil aggregates and individual soil particles were evaluated. Soil erosion was initiated under the controlled conditions. CTU Prague laboratory rainfall simulator and field laboratory in Jirkov were used for this research. The rainfall was artificially generated with use of a nozzle type rainfall simulator. The sediment transported due to the surface runoff and rill erosion was collected from the discharge of the inclined soil erosion plots (slopes 20 – 34°, slope length 4 m).<br>During each experiment, eight samples were collected. Four samples were collected during the first experimental rainfall. For the next ten days, the container was kept aside the rainfall. Afterwards, the raining with the rainfall simulator on plot (which now had different initial condition compared to the plot during the first experimental rainfall as the plot already contained erosion rills from the previous episode) has been resumed and another four samples were collected.<br>Experimental plots were vertically divided into two parts. On one part was an eel and on the second part were different types of rolled erosion control products (RECPs) – Enkamat 7010, and 7020, Biomac-C, coir fibres K700 and K400, jute, Macmat 8.1, mulch, hay, nonwoven, fortrac 3D and triangle. The influence of RECPs to the particle size distribution was investigated.<br>Laser diffraction has been selected as a method to determine particle size distribution and device Mastersizer 3000 was used. By the comparison of the particle size distribution, of more than five hundred samples, the different response to the soil erosion mechanism and the influence of external factors (slope of the experimental plot, initial condition and presence of RECPs) on the particle size distribution and soil aggregates content in eroded sediment were investigated. It has been found that both the particle size and aggregates size distribution of the eroded sediment changes considerably in time.<br>This research is funded by the TH02030428 - „Design of technical measures for slopes stabilization and soil erosion prevention” and by the International CTU grant SGS20/156/OHK1/3T/11.</p>


1985 ◽  
Vol 65 (3) ◽  
pp. 411-418 ◽  
Author(s):  
T. VOLD ◽  
M. W. SONDHEIM ◽  
N. K. NAGPAL

Soil erosion potential maps and summary statistics can be produced from existing information with relative ease with the aid of computers. Soil maps are digitized and survey information is stored as attributes for each soil. Algorithms are then prepared which evaluate the appropriate data base attributes (e.g. texture, slope) for each interpretation. Forty surface soil erosion potential maps were produced for the Lower Fraser Valley which identify the most erosion-prone areas and indicate average potential soil losses to be expected under assumed conditions. The algorithm developed follows the universal soil loss equation. Differences across the landscape in the R, K, and S factors are taken into account whereas the L factor is considered as a constant equal to 1.0. Worst conditions of bare soil (no crop cover, i.e. C = 1.0) and no erosion control practices (i.e. P = 1.0) are assumed. The five surface soil erosion potential classes are determined by a weighted average annual soil loss value based both on the upper 20 cm of mineral soil and on the proportion of the various soils in the polygon. A unique polygon number shown on the erosion potential map provides a link to computer tables which give additional information for each individual soil within that polygon. Key words: Erosion, computer mapping, USLE


2022 ◽  
Vol 14 (2) ◽  
pp. 348
Author(s):  
Yashon O. Ouma ◽  
Lone Lottering ◽  
Ryutaro Tateishi

This study presents a remote sensing-based index for the prediction of soil erosion susceptibility within railway corridors. The empirically derived index, Normalized Difference Railway Erosivity Index (NDReLI), is based on the Landsat-8 SWIR spectral reflectances and takes into account the bare soil and vegetation reflectances especially in semi-arid environments. For the case study of the Botswana Railway Corridor (BRC), the NDReLI results are compared with the RUSLE and the Soil Degradation Index (SDI). The RUSLE model showed that within the BRC, the mean annual soil loss index was at 0.139 ton ha−1 year−1, and only about 1% of the corridor area is susceptible to high (1.423–3.053 ton ha−1 year−1) and very high (3.053–5.854 ton ha−1 year−1) soil loss, while SDI estimated 19.4% of the railway corridor as vulnerable to soil degradation. NDReLI results based on SWIR1 (1.57–1.65 μm) predicted the most vulnerable areas, with a very high erosivity index (0.36–0.95), while SWIR2 (2.11–2.29 μm) predicted the same regions at a high erosivity index (0.13–0.36). From empirical validation using previous soil erosion events within the BRC, the proposed NDReLI performed better that the RUSLE and SDI models in the prediction of the spatial locations and extents of susceptibility to soil erosion within the BRC.


2016 ◽  
Vol 14 (1) ◽  
pp. e1201 ◽  
Author(s):  
MaoSheng Ge ◽  
Pute Wu ◽  
Delan Zhu ◽  
Daniel P. Ames

<p>An indoor experiment was conducted to analyze the movement characteristics of different sized droplets and their influence on water application rate distribution and kinetic energy distribution. Radial droplets emitted from a Nelson D3000 sprinkler nozzle under 66.3, 84.8, and 103.3 kPa were measured in terms of droplet velocity, landing angle, and droplet kinetic energy and results were compared to natural rainfall characteristics. Results indicate that sprinkler irrigation droplet landing velocity for all sizes of droplets is not related to nozzle pressure and the values of landing velocity are very close to that of natural rainfall. The velocity horizontal component increases with radial distance while the velocity vertical component decreases with radial distance. Additionally, landing angle of all droplet sizes decreases with radial distance. The kinetic energy is decomposed into vertical component and horizontal component due to the oblique angles of droplet impact on the surface soil, and this may aggravate soil erosion. Therefore the actual oblique angle of impact should be considered in actual field conditions and measures should be taken for remediation of soil erosion if necessary.</p>


Sign in / Sign up

Export Citation Format

Share Document