scholarly journals Symmetry breaking Paradigm In Typical Laminar-Turbulence Transition System

Author(s):  
Huang Chun ◽  
Yuchen Jiang

Abstract A stationary cylindrical vessel containing a rotating plate near the bottle surface is partially filled with liquid. With the bottom rotating, the shape of the liquid surface would become polygon-like. This polygon vortex phenomenon is a ideal system to demonstrate the Laminar-Turbulent transition process. Within the framework of equilibrium statistical mechanics, a profound comparison with Landau's phase transition theory was applied in symmetry breaking aspect to derive the evolution equation of this system phenomenologically. Comparison between theoretical prediction and experimental data is carried out. We concluded a considerably highly matched result, while some exceptions are viewed as the natural result that the experiment break through the up-limit of using equilibrium mechanics as a effective theory, namely breaking through the Arnold Tongue. Some extremely complex Non-equilibrium approaches was desired to solve this problem thoroughly in the future. So our method could be viewed as a linear approximation of this theoretical framework.

2021 ◽  
Author(s):  
Chunfei FANG ◽  
Jinglei Xu

Abstract Wall roughness significantly influences both laminar-turbulent transition process and fully developed turbulence. This work has developed a wall roughness extension for the KDO turbulence/transition model. The roughness effect is introduced via the modification of the k and νt boundary conditions, i.e., the wall is considered to be raised at an extra height. The equivalent roughness height is linked to the actual roughness height, and the ratio between them is determined by reasoning. With such a roughness extension, the predictions of the KDO RANS model agree well with the measurements of turbulent boundary layer with a sand grain surface, while the KDO transition model yields accurate cross-flow transition predictions of flow past a 6:1 spheroid.


2009 ◽  
Vol 24 (18) ◽  
pp. 1425-1435 ◽  
Author(s):  
VLADIMIR SHEVCHENKO

The physics of symmetry breaking in theories with strongly interacting quanta obeying infinite (quantum Boltzmann) statistics known as quons is discussed. The picture of Bose/Fermi particles as low energy excitations over nontrivial quon condensate is advocated. Using induced gravity arguments, it is demonstrated that the Planck mass in such low energy effective theory can be factorially (in number of degrees of freedom) larger than its true ultraviolet cutoff. Thus, the assumption that statistics of relevant high energy excitations is neither Bose nor Fermi but infinite can remove the hierarchy problem without necessity to introduce any artificially large numbers. Quantum mechanical model illustrating this scenario is presented.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950046
Author(s):  
Saba Shafaq ◽  
Ishtiaq Ahmed ◽  
M. Jamil Aslam

The present study investigates the decay of B to heavy meson using the soft collinear effective theory. By assigning different loop momenta, the factorization has been tested and it is found to be valid to all orders in the perturbation theory. It is noted that theory contains one hard collinear and two soft modes depending upon virtuality of different momenta. In the next step, symmetry-conserving relations (in heavy quark limits) to the form factors have been studied. These relations are then used to parametrize the form factors to get symmetry-breaking corrections. These symmetry-breaking corrections can be calculated using perturbative (vertex corrections) as well as nonperturbative (hard spectator interactions) QCD. It is found that in the heavy quark limit, these symmetry contributions do not contribute to the form factors that appear in physical observables for the case of [Formula: see text] decays which are contrary to the heavy-to-light meson decays.


1999 ◽  
Vol 14 (09) ◽  
pp. 1389-1427
Author(s):  
JONGBAE KIM

We construct the low energy effective theory of composite quarks, leptons, and Higgs bosons for a supersymmetric preon model and study the effects of renormalization-group based radiative corrections. The study on the evolution of scalar masses for avoiding color and charge breakings leads us to conclude that Yukawa couplings are bounded from above. The implementation of electroweak symmetry breaking requires that only the purely dynamical symmetry breaking should be needed for the model, but the combined scheme of dynamical and radiative symmetry breaking as well as the purely radiative symmetry breaking scheme be disfavored. Our analysis of [Formula: see text] including radiative effects shows that, should a discrepancy be found between the observed and the theoretical value of [Formula: see text] after experimental determination of supersymmetric particle masses, it would imply that the complete quark–lepton universality in the supersymmetric preon model does not hold either for the Yukawa couplings, or for the condensates, or for both.


Author(s):  
H. Pfeil ◽  
R. Herbst ◽  
T. Schröder

The boundary layer transition under instationary afflux conditions as present in the stages of turbomachines is investigated. A model for the transition process is introduced by means of time-space distributions of the turbulent spots during transition and schematic drawings of the instantaneous boundary layer thicknesses. To confirm this model, measurements of the transition with zero and favorable pressure gradient are performed.


2012 ◽  
Vol 455-456 ◽  
pp. 1153-1159
Author(s):  
Qiang Wang ◽  
Zhao Yuan Guo ◽  
Guo Tai Feng

The investigation was to study the effect of laminar-turbulent transition on predicting thermal load of vane. The Abu-Ghannam and Shaw (AGS) algebraic transition model was applied in the coupled solver, HIT3D. Then the solver was employed to carry out coupled heat transfer simulations, and the test case was 5411 run of NASA0-MARKⅡ vane, a high-pressure turbine vane. The results shown that AGS model was able to predict the transition process in the boundary layer near the vane, and that the simulation with such model leads to thermal load agreeing well the measured one. Then the developed solver was applied to predict a low-pressure vane, and the results shown that CHT simulation with full turbulence model would predict higher thermal load than that with transition model.


Sign in / Sign up

Export Citation Format

Share Document