scholarly journals Sarcoglycan A Mutation in Miniature Dachshund Dogs Causes Limb Girdle Muscular Dystrophy 2D

2020 ◽  
Author(s):  
James R Mickelson ◽  
Katie M Minor ◽  
Ling T Guo ◽  
Steven G Friedenberg ◽  
Jonah N Cullen ◽  
...  

Abstract BackgroundA cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria and markedly elevated serum creatine kinase activities were identified. MethodsMuscle biopsy histopathology, immunofluorescence microscopy, and western blotting, were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis.ResultsMuscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene ( SGCA ). Affected dachshunds were confirmed on several continents. ConclusionsThis first SGCA mutation found in dogs adds to the literature of genetic bases of canine muscular dystrophies and their usefulness as comparative models of human disease.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
James R. Mickelson ◽  
Katie M. Minor ◽  
Ling T. Guo ◽  
Steven G. Friedenberg ◽  
Jonah N. Cullen ◽  
...  

Abstract Background A cohort of related miniature dachshund dogs with exercise intolerance, stiff gait, dysphagia, myoglobinuria, and markedly elevated serum creatine kinase activities were identified. Methods Muscle biopsy histopathology, immunofluorescence microscopy, and western blotting were combined to identify the specific pathologic phenotype of the myopathy, and whole genome SNP array genotype data and whole genome sequencing were combined to determine its genetic basis. Results Muscle biopsies were dystrophic. Sarcoglycanopathy, a form of limb-girdle muscular dystrophy, was suspected based on immunostaining and western blotting, where α, β, and γ-sarcoglycan were all absent or reduced. Genetic mapping and whole genome sequencing identified a premature stop codon mutation in the sarcoglycan A subunit gene (SGCA). Affected dachshunds were confirmed on several continents. Conclusions This first SGCA mutation found in dogs adds to the literature of genetic bases of canine muscular dystrophies and their usefulness as comparative models of human disease.


2021 ◽  
Vol 7 (1) ◽  
pp. e554
Author(s):  
Leigh B. Waddell ◽  
Samantha J. Bryen ◽  
Beryl B. Cummings ◽  
Adam Bournazos ◽  
Frances J. Evesson ◽  
...  

ObjectiveTo describe the diagnostic utility of whole-genome sequencing and RNA studies in boys with suspected dystrophinopathy, for whom multiplex ligation-dependent probe amplification and exomic parallel sequencing failed to yield a genetic diagnosis, and to use remnant normal DMD splicing in 3 families to define critical levels of wild-type dystrophin bridging clinical spectrums of Duchenne to myalgia.MethodsExome, genome, and/or muscle RNA sequencing was performed for 7 males with elevated creatine kinase. PCR of muscle-derived complementary DNA (cDNA) studied consequences for DMD premessenger RNA (pre-mRNA) splicing. Quantitative Western blot was used to determine levels of dystrophin, relative to control muscle.ResultsSplice-altering intronic single nucleotide variants or structural rearrangements in DMD were identified in all 7 families. Four individuals, with abnormal splicing causing a premature stop codon and nonsense-mediated decay, expressed remnant levels of normally spliced DMD mRNA. Quantitative Western blot enabled correlation of wild-type dystrophin and clinical severity, with 0%–5% dystrophin conferring a Duchenne phenotype, 10% ± 2% a Becker phenotype, and 15% ± 2% dystrophin associated with myalgia without manifesting weakness.ConclusionsWhole-genome sequencing relied heavily on RNA studies to identify DMD splice-altering variants. Short-read RNA sequencing was regularly confounded by the effectiveness of nonsense-mediated mRNA decay and low read depth of the giant DMD mRNA. PCR of muscle cDNA provided a simple, yet informative approach. Highly relevant to genetic therapies for dystrophinopathies, our data align strongly with previous studies of mutant dystrophin in Becker muscular dystrophy, with the collective conclusion that a fractional increase in levels of normal dystrophin between 5% and 20% is clinically significant.


2016 ◽  
Vol 28 (3-4) ◽  
pp. 106-113 ◽  
Author(s):  
Peter P. Nghiem ◽  
Luca Bello ◽  
Cindy Balog-Alvarez ◽  
Sara Mata López ◽  
Amanda Bettis ◽  
...  

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Ho Jang ◽  
Youngmi Hur ◽  
Hyunju Lee

Abstract DNA copy number alterations (CNAs) are the main genomic events that occur during the initiation and development of cancer. Distinguishing driver aberrant regions from passenger regions, which might contain candidate target genes for cancer therapies, is an important issue. Several methods for identifying cancer-driver genes from multiple cancer patients have been developed for single nucleotide polymorphism (SNP) arrays. However, for NGS data, methods for the SNP array cannot be directly applied because of different characteristics of NGS such as higher resolutions of data without predefined probes and incorrectly mapped reads to reference genomes. In this study, we developed a wavelet-based method for identification of focal genomic alterations for sequencing data (WIFA-Seq). We applied WIFA-Seq to whole genome sequencing data from glioblastoma multiforme, ovarian serous cystadenocarcinoma and lung adenocarcinoma, and identified focal genomic alterations, which contain candidate cancer-related genes as well as previously known cancer-driver genes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Qianqian Li ◽  
Zhanni Chen ◽  
Hui Xiong ◽  
Ranran Li ◽  
Chenguang Yu ◽  
...  

Duchenne muscular dystrophy (DMD), one of the most common progressive and severely disabling neuromuscular diseases in children, can be largely attributed to the loss of function of the DMD gene on chromosome Xp21.2-p21.1. This paper describes the case of a 10-year-old boy diagnosed with DMD. Whole exome sequencing confirmed the hypothesized large partial exonic deletion of c.7310-11543_7359del (chrX:g.31792260_31803852del) spanning exon 51 and intron 50 in DMD. This large deletion was verified to be de novo by PCR, and the two breakpoints were further confirmed by Sanger sequencing and long-read whole-genome sequencing. Notably, this partial exonic deletion was the only complex variation in the deep intron regions or intron–exon junction regions in DMD. In addition, the case study demonstrates the clinical importance of using multiple molecular genetic testing methods for the diagnosis of rare diseases.


Cancers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 6283
Author(s):  
Migle Gabrielaite ◽  
Mathias Husted Torp ◽  
Malthe Sebro Rasmussen ◽  
Sergio Andreu-Sánchez ◽  
Filipe Garrett Vieira ◽  
...  

Copy-number variations (CNVs) have important clinical implications for several diseases and cancers. Relevant CNVs are hard to detect because common structural variations define large parts of the human genome. CNV calling from short-read sequencing would allow single protocol full genomic profiling. We reviewed 50 popular CNV calling tools and included 11 tools for benchmarking in a reference cohort encompassing 39 whole genome sequencing (WGS) samples paired current clinical standard—SNP-array based CNV calling. Additionally, for nine samples we also performed whole exome sequencing (WES), to address the effect of sequencing protocol on CNV calling. Furthermore, we included Gold Standard reference sample NA12878, and tested 12 samples with CNVs confirmed by multiplex ligation-dependent probe amplification (MLPA). Tool performance varied greatly in the number of called CNVs and bias for CNV lengths. Some tools had near-perfect recall of CNVs from arrays for some samples, but poor precision. Several tools had better performance for NA12878, which could be a result of overfitting. We suggest combining the best tools also based on different methodologies: GATK gCNV, Lumpy, DELLY, and cn.MOPS. Reducing the total number of called variants could potentially be assisted by the use of background panels for filtering of frequently called variants.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 863-863
Author(s):  
Stanley R Clarke ◽  
Adrianna Vlachos ◽  
Jens Lichtenberg ◽  
Nancy E Seidel ◽  
Jaya Jagadeesh ◽  
...  

Abstract Diamond Blackfan anemia syndrome (DBAS) is a rare, heritable bone marrow failure syndrome characterized by severe macrocytic anemia, congenital anomalies and predisposition to cancer, most often diagnosed during infancy. More than 98% of DBAS patients with a molecular diagnosis have mutations in a gene encoding one of the ~80 ribosomal proteins (RP) leading to haploinsufficiency. A molecular diagnosis in a patient with DBAS is critical for a definitive diagnosis, the identification of compatible related transplant donors, and developing reproductive strategies for families. Targeted sequencing of RP genes, single nucleotide polymorphism comparative genome hybridization (SNP array) to detect >30 kb deletions (Farrar et al. Blood. 2011) and exome sequencing (WES) (Ulrisch et al. Am J Hum Genet. 2018) has identified RP mutations in ~80% of patients, leaving ~20% of patients with DBAS without a molecular diagnosis. Targeted sequencing and WES focus on only coding sequences. We hypothesized that remaining 20% of DBAS mutations were in the non-coding regions of RP genes, such as promoters or introns. To test this hypothesis, we collected DNA with informed consent for whole genome sequencing (WGS) analysis from 14 patients with no molecular diagnosis after targeted sequencing, SNP array or WES. On average, we aligned ~3.2x10 7 paired end reads of 250 base pairs for each patient (~65X coverage). We focused our analysis on the sequences in and around the RP genes. To identify deletions, we used a suite of detection tools: DELLY, GRIDSS, MANTA, and LUMPY. More than 90% of deletions identified by any 2 of these tools were confirmed by PCR. We identified 5 deletions in the introns of RP genes, ranging from 11 to 467 base pairs in length, which we hypothesized disrupted splicing of the nascent RNA transcript. To test this, we created minigenes in which we replaced exon 2 of a gamma globin gene with either the WT or mutant RP exon. All wild type exons spliced normally. A 467 base pair deletion in RPL27 exon 3 was sufficient to prevent the correct splicing of that intron. Examination of the eCLIP data for RNA binding proteins revealed that spliceosome complex proteins (including SF3B1, SF3B4 and EFTUD2) and Dead-box RNA helicases bind in the deleted region. A 28 base pair deletion in exon 3 of RPL6 removes a polypyrimidine tract that is a critical part of the 3' splice junction consensus sequence, which we presume is also deleterious. The other 3 intronic deletions did not disrupt splicing. We also identified 2 causative point mutations. A point mutation 5 bases into intron 1 of the RPS26 gene changes a base in the 5' splice donor consensus sequence, which activated a cryptic splice donor in the 5' untranslated region. This aberrant splice removes the ATG initiation codon causing an untranslatable RNA. In another patient, we identified a mutation in exon 1 of the RPS27 gene, judged to be a benign amino acid change. This mutation disrupted splicing.by activating a cryptic splice donor site in the 5' untranslated region which removes the ATG initiation codon and causes a frame shift. We were referred two patients with possible duplications of the RPL35a gene. To identify duplications, we employed MinION long read single molecule sequencing. We had an average read length of ~ 6-10kb with the longest read being 1.3Mb. Overall coverage was >85X. We used minimap2 to align the reads to the reference human genome and used SNIFFLES to call the variants. One patient was the parent of DBAS-affected patient with no history of anemia. In this patient, we identified a duplication of 400 kb that included the entire RPL35a region along with genes on either side. We conclude that this duplication is not likely to cause DBA. The second patient was diagnosed with DBAS. In this patient, we identified a duplication of 4 kb including exons 1 and 2 of RPL35a We conclude that this duplication disrupts the RPL35a gene and is a likely cause of DBA. Whole genome sequencing of 15 DBAS patients identified 5 likely causative mutations in RP genes, confirming that most genetically undiagnosed cases of DBAS will involve known genes encoding RP. We conclude that the pipeline for obtaining a molecular diagnosis for DBAS from targeted sequencing, SNP array, and exome sequencing to whole genome sequencing. Disclosures Vlachos: Novartis: Membership on an entity's Board of Directors or advisory committees. Lipton: Celgene: Membership on an entity's Board of Directors or advisory committees.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2502-2502
Author(s):  
David M. Bodine ◽  
Jens Lichtenberg ◽  
Nancy Seidel ◽  
NISC Comparative SequencingProgram ◽  
G. Jayashree Jagadeesh ◽  
...  

Diamond Blackfan Anemia Syndrome (DBA) is a rare, congenital bone marrow failure syndrome characterized by severe macrocytic anemia, most often diagnosed during infancy. Congenital anomalies and predisposition to cancer are also important features of DBA. Establishment of a molecular diagnosis in a patient with DBA is critical to determine treatment strategies (i.e. the identification of compatible related transplant donors), as well as developing reproductive strategies for genetically at risk families. The overwhelming majority (>98.75%) of DBA patients with a molecular diagnosis have mutations in a Ribosomal Protein (RP) gene. Targeted and exome sequencing (WES) strategies can identify RP mutations in >70% of DBA patients (Ulrisch et al. Am J Hum Genet. 2018). Single Nucleotide Polymorphism Comparative Genome Hybridization (SNP array) detects >30 kb deletions of RP genes (which cannot be identified by sequencing) in ~10% of DBA patients (Farrar et al. Blood. 2011), leaving ~20% of DBA patients without a molecular diagnosis. We hypothesized that smaller copy number variants (CNVs - either insertions or deletions) in RP genes that are below the limit of detection of SNP array are responsible for the remaining 20%. To test this hypothesis we collected DNA with informed consent for whole genome sequencing (WGS) analysis from 6 patients who had no mutations detected by WES or SNP array. On average, we aligned ~1x1010paired end reads of 250 base pairs for each patient (~83X coverage of the genome). The aligned sequences were analyzed for CNVs using two independent software packages. Delly analyzes the two ends of each sequence read and maps them to the current human reference genome. Read ends that map further apart than expected are flagged as potential CNVs. CNVkit estimates regions of copy loss by changes in average sequencing depth. Using relatively relaxed thresholds in Delly and CNVkit we identified ~100 candidate CNVs in each patient. We filtered out CNVs present in public databases and focused on those CNVs in the region of the RP genes. This analysis identified 2-5 potential RP gene associated CNVs in each patient. We designed PCR primers that flanked each putative CNV and confirmed at least one RP CNV in all 6 patient DNAs. At this time, the CNVs in two patients are in the process of evaluation. We have validated causative RP CNVs in the other 4 patients, representing one known and three novel DBA genes. One patient had a 464 bp deletion in 3rdintron of the RPL27 gene, which is mutated in other DBA patients. We hypothesized that the deletion caused a splicing defect. Using a mini gene in which the second intron of the gamma globin gene was replaced with the 3rdintron of either the wild type or mutant RPL27 gene, we showed that the mutant exon was not spliced. An alternative hypothesis, that the deletion removed an enhancer element, was also tested, but no enhancer activity was detected. We conclude that the RPL27exon deletion causes aberrant splicing leading to an unstable RPL27 mRNA and haploinsufficiency of RPL27. A second patient had a 3.5 kb deletion at the 3' end of the RPS5 gene, including the stop codon and poly A addition site. We hypothesized that the lack of the 3' processing signals would lead to an unstable mRNA. To test this hypothesis we generated MYC and FLAG tagged wildtype and 3' deleted RPS5 genes and co-transfected them into 293T cells. Regardless of the tag used, RT-PCR analysis showed a severe reduction in the mutant mRNA levels. Western Blot analysis demonstrated that only the wild type protein was expressed, leading to the conclusion that the RPS5 truncation led to an unstable RPS5 mRNA and haploinsufficiency of RPS5. A third patient had a 28 kb deletion that removes the RPS9 gene. shRNA knockdown of RPS9 mRNA in normal CD34+ cells inhibited erythroid differentiation, leading to the conclusion that RPS9 deficiency causes DBA. Finally, we observed a 3 bp insertion in exon 6 of the RPL14 gene. The deletion adds an alanine residue to a string of 10 alanines in the wild type allele. We confirmed the insertion by targeted sequence analysis of patient DNA. Our data show that WGS can identify small CNVs that cause DBA in at least 2/3 of patients who do not have a mutation detectable by other methods. We believe that WGS analysis following targeted sequencing, SNP array and WES can identify virtually all DBA mutations. With declining WGS costs, we recommend adding WGS to the molecular diagnostic pipeline for genetic testing of DBA. Disclosures Farrar: Novartis: Research Funding. Vlachos:Novartis: Other: Steering committee member.


Sign in / Sign up

Export Citation Format

Share Document