scholarly journals The climate roles of H2O and CO2 from longwave absorption

Author(s):  
Thomas Anderl

Abstract In search for reproducibility of the results from sophisticated scientific research, the present work focuses on the longwave absorption in the atmosphere. It is found that the variability of Earth’s surface temperature follows a near-proportional relationship between the atmospheric trace gas concentrations of water vapor and CO2, and longwave absorption. Furthermore, estimates are attempted on the CO2 V/R-T (vibrational/rotational-to-translational) energy transfer as a dominant heating process.

2021 ◽  
Author(s):  
Thomas Anderl

Abstract Earth’s well-known energy budget scheme is subjected to variations representing changes of insolation and atmospheric absorption. The Charney Report variability cases of doubled atmospheric CO2 concentration and insolation increase by 2 % are found reproducible. The planetary emissivity is revealed linear to surface temperature, conformant with measurements. Atmospheric water vapor with its characteristic concentration-temperature dependency appears as a major component in Earth’s energy balancing mechanisms. From this, shift towards fewer and stronger rainfall events is prescribed for rising temperatures.


1994 ◽  
Vol 99 (C3) ◽  
pp. 5219 ◽  
Author(s):  
William J. Emery ◽  
Yunyue Yu ◽  
Gary A. Wick ◽  
Peter Schluessel ◽  
Richard W. Reynolds

2016 ◽  
Vol 9 (9) ◽  
pp. 3213-3229 ◽  
Author(s):  
Mark F. Lunt ◽  
Matt Rigby ◽  
Anita L. Ganesan ◽  
Alistair J. Manning

Abstract. Atmospheric trace gas inversions often attempt to attribute fluxes to a high-dimensional grid using observations. To make this problem computationally feasible, and to reduce the degree of under-determination, some form of dimension reduction is usually performed. Here, we present an objective method for reducing the spatial dimension of the parameter space in atmospheric trace gas inversions. In addition to solving for a set of unknowns that govern emissions of a trace gas, we set out a framework that considers the number of unknowns to itself be an unknown. We rely on the well-established reversible-jump Markov chain Monte Carlo algorithm to use the data to determine the dimension of the parameter space. This framework provides a single-step process that solves for both the resolution of the inversion grid, as well as the magnitude of fluxes from this grid. Therefore, the uncertainty that surrounds the choice of aggregation is accounted for in the posterior parameter distribution. The posterior distribution of this transdimensional Markov chain provides a naturally smoothed solution, formed from an ensemble of coarser partitions of the spatial domain. We describe the form of the reversible-jump algorithm and how it may be applied to trace gas inversions. We build the system into a hierarchical Bayesian framework in which other unknown factors, such as the magnitude of the model uncertainty, can also be explored. A pseudo-data example is used to show the usefulness of this approach when compared to a subjectively chosen partitioning of a spatial domain. An inversion using real data is also shown to illustrate the scales at which the data allow for methane emissions over north-west Europe to be resolved.


Author(s):  
Thomas Anderl

The broader public demand reproducibility of scientific results particularly related to hot societal topics. The present work applies the 80:20-rule to climate change, concentrating on the essentials from the readily observable and identifying the inherent relationships in their potential simplicity. Observations on 400 Mio. years of paleoclimate are found to well constrain the compound universal climate role of CO 2. Combined with observations on the industrial-era atmospheric CO 2 and ocean heat evolvement, climate risk assessment and projections on the economic boundaries are performed. Independently in conjunction with energy budget studies, simple models are presented for the fundamental natural processes related to: (i) water vapor and CO 2 effect on temperature; (ii) transient and equilibrium climate; (iii) heating from the V/R-T (vibrational/rotational to translational) energy transfer; (iv) Earth emissivity changing with surface temperature; (v) water vapor for Earths energy balance maintenance; (vi) rainfall pattern altering with temperature; (vii) natures reaction on the anthropogenic energy consumption. In conclusion, realistic estimates point at precluding positive economic growth for the foreseeable future if temperatures are to be given a reasonable chance to become sustainably contained within sensible limits.


Sign in / Sign up

Export Citation Format

Share Document