scholarly journals Modeling and Optimization of Phosphate Solubilizing Bacteria Isolated from Rhizospheric Soils of the Coffee Plant using Artificial Neural Network (ANN) and Response Surface Methodology (RSM).

Author(s):  
ermias girma aklilu ◽  
Yasin Ahmed ◽  
Mohammed Seid ◽  
Venkata Ramayya

Abstract Phosphorus is often found inaccessible to plants, as it forms precipitates with cations and can be converted to accessible forms by using Phosphate solubilizing bacteria (PSB). In the present study, isolation and characterization of phosphate solubilizing bacteria from rhizospheric soil of coffee plants were performed. The influence of four independent variables (incubation temperature, incubation time, pH, and inoculum size) was investigated and optimized using an artificial neural network and response surface methodology on the solubility of phosphate and indole acetic acid production. The bacterium that can dissolve phosphate were isolated in Pikovskaya’s agar containing insoluble tricalcium phosphate. Total, six Phosphate Solubilizing Bacteria were isolated and three of them (PSB1, PSB3, and PSB4) were found to be effectively solubilizing phosphate. Based on phosphate solubilizing index results Pseudomonas bacteria (PSB1) was selected for modeling. The results showed that both models performed reasonably well, but properly trained artificial neural networks have the more powerful modeling capability compared to the response surface method. The optimum conditions were found to be incubation temperature of 37.5 oC, incubation time of 9 days, pH of 7.2, and inoculum size of 1.89 OD. Under these conditions, the model predicted solubility of phosphate of 260.69 µg/ml and production of IAA of 80.00µg/ml with a desirability value of 0.947. Generally, the isolated Pseudomonas bacteria is a promising Phosphate solubilizing capability that enhances plant growth and this research is a base for recommending the use of this bacterial strain for biofertilizer, as an alternative to synthetic fertilizer.

Author(s):  
Morteza Nazerian ◽  
Seyed Ali Razavi ◽  
Ali Partovinia ◽  
Elham Vatankhah ◽  
Zahra Razmpour

The main aim of this study is usability evaluation of different approaches, including response surface methodoloy, adaptive neuro-fuzzy inference system, and artificial neural network models to predict and evaluate the bonding strength of glued laminated timber (glulam) manufactured using walnut wood layers and a natural adhesive (oxidized starch adhesive), with respect to this fact that using the modified starch can decrease the formaldehyde emission. In this survey, four variables taken as the input data include the molar ratio of formaldehyde to urea (1.12–1.52), nanocellulose content (0%–4%, based on the dry weight of the adhesive), the mass ratio of the oxidized starch adhesive to the urea formaldehyde resin (30:70–70:30), and the press time (4–8 min). In order to find the best predictive performance of each selected evaluation approach, different membership functions were used. The optimal results were obtained when the molar ratio, nanocellulose content, mass ratio of the oxidised starch, and press time were set at 1.22, 3%, 70:30, and 7 min, respectively. Based on the performance criteria including root mean square error (RMSE) and mean absolute percentage error (MAPE) obtained from the modeling of response surface methodology, adaptive neuro-fuzzy inference network, and artificial neural network, it became evident that response surface methodology could offer a better prediction of the response with the lowest level of errors. Beside, artificial neural network and adaptive neuro-fuzzy inference system support the response surface methodology approach to evaluate bonding strength response with high precision as well as to determine the optimal point in fabrication of laminated products.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ching-Hsiang Chen ◽  
Chien-Yi Huang ◽  
Yan-Ci Huang

Purpose The purpose of this study is to use the Taguchi Method for parametric design in the early stages of product development. electromagnetic compatibility (EMC) issues can be considered in the early stages of product design to reduce counter-measure components, product cost and labor consumption increases due to a number of design changes in the R&D cycle and to accelerate the R&D process. Design/methodology/approach The three EMC characteristics, including radiated emission, conducted emission and fast transient impulse immunity of power, are considered response values; control factors are determined with respect to the relevant parameters for printed circuit board and mechanical design of the product and peripheral devices used in conjunction with the product are considered as noise factors. The optimal parameter set is determined by using the principal component gray relational analysis in conjunction with both response surface methodology and artificial neural network. Findings Market specifications and cost of components are considered to propose an optimal parameter design set with the number of grounded screw holes being 14, the size of the shell heat dissipation holes being 3 mm and the arrangement angle of shell heat dissipation holes being 45 degrees, to dispose of 390 O filters on the noise source. Originality/value The optimal parameter set can improve EMC effectively to accommodate the design specifications required by customers and pass test regulations.


Sign in / Sign up

Export Citation Format

Share Document