scholarly journals Exploration of Nonlinear Optical Enhancement and Interesting Optical Behavior with Pyrene Moiety as the Conjugated Donor and Efficient Modification in Acceptor Moieties

Author(s):  
Muhammad Khalid ◽  
Muhammad Usman Khan ◽  
Nimra Azhar ◽  
Muhammad Nadeem Arshad ◽  
Abdullah M. Asiri ◽  
...  

Abstract Herein, a series of new pyrene based hexylcyanoacetate derivatives (HPPC1-HPPC8) with A–π–D–π–D configuration were designed by end-capped modeling of non-fullerene acceptors on the structure of reference compound named dihexyl 3,3'-(pyrene-1,6-diylbis(4,1-phenylene))(2E,2'E)-bis(2-cyanoacrylate) HPPCR. Quantum chemical calculations of HPPCR and HPPC1-HPPC8 were accomplished at M06/6-31G(d, p) level. The stability of molecules due to the strongest hyper conjugative interactions in HPPCR and HPPC1-HPPC8 was estimated through NBO study. Interestingly, HOMO-LUMO band-gap of HPPC1-HPPC8 was found smaller than HPPCR which resulted in large NLO response. Among all the investigated compounds HPPC7 showed the larger NLO response due to the presence of four cyanide (CN) groups which strengthens the bridge conjugation, and its band gap was found to be 2.11eV, smaller as compared to band gap of HPPCR (3.225 eV). The absorption spectra of HPPC1-HPPC8 compounds showed maximum absorption wavelengths (483–707 nm) than HPPCR (471.764nm). The designed compounds showed high NLO response than HPPCR. Amazingly, highest amplitude of linear polarizability < α>, first hyperpolarizability (βtotal) and second hyperpolarizability < γ > for HPPC7 were achieved to be 1331.191, 200112.2 and 4.131 ×107 (a.u), respectively. NLO response showed that the HPPC1-HPPC8 might be potential candidates for NLO applications.

2021 ◽  
Vol 8 ◽  
Author(s):  
Muhammad Usman Khan ◽  
Muhammad Khalid ◽  
Sumreen Asim ◽  
Momina ◽  
Riaz Hussain ◽  
...  

High-tech electronic, optics, and storage devices require organic compounds with nonlinear optical (NLO) properties. This study designed D-π-A based dyes with donor triphenylamine (TPA) and acceptor dicyanovinylene (DCV) species by structurally modifying π-conjugated linkers. Our density functional theory (DFT) computations analyzed the impact of structural variations on the nonlinear optical (NLO) response of newly designed dyes. The B3LYP/6-31G(d,p) level determined the quantic chemical insights: frontier molecular orbital (FMOs), natural bond orbitals (NBOs), and nonlinear optical (NLO) properties of the designed dyes (DPTM-1 to DPTM-12). UV-Vis analysis based on the TD-DFT/CAM-B3LYP/6-311+G(d,p) level explored the optoelectronic properties. DPTM-1 and DPTM-5 showed the highest red-shifted absorption band at 519 and 506 nm. NBO analysis shows that DPTM-1 to DPTM-12 dyes have positive values for all donors (D) and π-spacers but negative values for acceptors (A). The π-spacers act as a conveyer between donor and acceptor moieties; thus, electrons were transferred smoothly from D to A units, which resulted in a charge separation state. Our calculations show the extent of NLO response in terms of electronic transitions, polarizability &lt;α&gt;, and first hyperpolarizability (β) values. The highest value of βtotal was 110,509.23 a.u. manifested in DPTM-6 due to 2,5-dimethyloxazole as a second π-linker, twice that of R (66,275.95 a.u.). Also, DPTM-6 and DPTM-8 exhibit the lowest energy band gap of 2.06 and 2.04 eV, respectively. In short, all DPTM-1 to DPTM-12 dyes manifested maximum absorption, lowest energy band gap, greater charge transfer from donor to the acceptor, and better first hyperpolarizability values as compared to the R and showed good NLO response. The present work represents new compounds with remarkable NLO properties and their applications in modern high-tech devices.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1321
Author(s):  
Yasunobu Asawa ◽  
Aleksandra V. Arsent’eva ◽  
Sergey A. Anufriev ◽  
Alexei A. Anisimov ◽  
Kyrill Yu. Suponitsky ◽  
...  

Bis(carboranyl)amides 1,1′-μ-(CH2NH(O)C(CH2)n-1,2-C2B10H11)2 (n = 0, 1) were prepared by the reactions of the corresponding carboranyl acyl chlorides with ethylenediamine. Crystal molecular structure of 1,1′-μ-(CH2NH(O)C-1,2-C2B10H11)2 was determined by single crystal X-ray diffraction. Treatment of bis(carboranyl)amides 1,1′-μ-(CH2NH(O)C(CH2)n-1,2-C2B10H11)2 with ammonium or cesium fluoride results in partial deboronation of the ortho-carborane cages to the nido-carborane ones with formation of [7,7′(8′)-μ-(CH2NH(O)C(CH2)n-7,8-C2B9H11)2]2−. The attempted reaction of [7,7′(8′)-μ-(CH2NH(O)CCH2-7,8-C2B9H11)2]2− with GdCl3 in 1,2-dimethoxy- ethane did not give the expected metallacarborane. The stability of different conformations of Gd-containing metallacarboranes has been estimated by quantum-chemical calculations using [3,3-μ-DME-3,3′-Gd(1,2-C2B9H11)2]− as a model. It was found that in the most stable conformation the CH groups of the dicarbollide ligands are in anti,anti-orientation with respect to the DME ligand, while any rotation of the dicarbollide ligand reduces the stability of the system. This makes it possible to rationalize the design of carborane ligands for the synthesis of gadolinium metallacarboranes on their base.


2000 ◽  
Vol 660 ◽  
Author(s):  
B. Sahraoui ◽  
K.J. Pluciński ◽  
M. Makowaska-Janusik ◽  
I. V. Kityk ◽  
M. Salle ◽  
...  

ABSTRACTA study was made of third-order nonlinear optical susceptibilities of new tetrathiafulvalene (TTF) derivatives, using the degenerate four wave mixing (DFWM) method, as well as complex quantum chemical calculations. To understand the physical nature of the optical nonlinearities, we separated their electronic and nuclear contributions. We found that the electronic contribution to these nonlinearities predominated. Our investigations suggest that TTF may be a highly promising material for nonlinear optics (NLO).


2018 ◽  
Vol 20 (28) ◽  
pp. 19007-19016 ◽  
Author(s):  
Manoj Majumder ◽  
Anirban Misra

The zwitterionic donor–acceptor group significantly reduces the HOMO–LUMO energy gap resulting in an enormous increase in the first hyperpolarizability values.


2021 ◽  
Author(s):  
Azadeh Jamshidi ◽  
Zeinab Biglari

Abstract The effect of alkali metals (Li, Na and K) interaction on the nonlinear optical response (NLO) of Ga12N12 nanocage has been performed using density functional theory (DFT) calculations. The results show that the exo-M@Ga12N12 structures are energetically favorable with negative interaction energies in the range of ‒1.50 to ‒2.28 eV. The electronic properties of decorated structures are strongly sensitive to interaction with the alkali metals. The HOMO-LUMO gap of Ga12N12 is reduced by about 70% due to the decoration with alkali metals. It is obtained that the adsorption of alkali metals over the tetragonal ring of Ga12N12 nanocage remarkably enhances the first hyperpolarizability up to 6.5×104 au. The results display that decorating Ga12N12 nanocage with alkali metals can be introduced it as a novel inorganic nanomaterial with significant NLO properties.


1998 ◽  
Vol 9 (1) ◽  
pp. 47-50
Author(s):  
Norberto Pelentir ◽  
Obdulio G. Miguel ◽  
Ines M.C. Brighente ◽  
Santiago F. Yunes ◽  
Ivo Vencato ◽  
...  

2019 ◽  
Vol 43 (34) ◽  
pp. 13616-13629
Author(s):  
Muhammed Jeneesh Kariyottu Kuniyil ◽  
Ramanathan Padmanaban

Here we investigate the structural, photophysical and nonlinear optical (NLO) properties of phenoxazin-3-one dyes, resazurin (Rz) and resorufin (Rf), by performing quantum chemical calculations using the DFT and TDDFT methods.


Sign in / Sign up

Export Citation Format

Share Document