scholarly journals Topological dislocations for plasmonic mode localization

2020 ◽  
Author(s):  
Eliav Epstein ◽  
Leeju Singh ◽  
Maayan Fox ◽  
Shmuel Sternklar ◽  
Yuri Gorodetski

Abstract We study the localization of plasmonic modes on topological dislocations obtained by an abrupt change in the geometry of unit-cells in a plasmonic metasurface. We experimentally demonstrate mode localization in line defects and point singularities in the topology. These results are confirmed by numerical simulations of the near field distributions along the topology boundaries. We present structures with line dislocations supporting dark and bright modes. Moreover, we show that in structures with point dislocations the localization strength can be further manipulated by modifying the topological order of the structure.

2021 ◽  
pp. 108128652110108
Author(s):  
Emilio Turco ◽  
Emilio Barchiesi ◽  
Francesco dell’Isola

This contribution presents the results of a campaign of numerical simulations aimed at better understanding the propagation of longitudinal waves in pantographic beams within the large-deformation regime. Initially, we recall the key features of a Lagrangian discrete spring model, which was introduced in previous works and that was tested extensively as capable of accurately forecasting the mechanical response of structures based on the pantographic motif, both in statics and dynamics. Successively, a stepwise integration scheme used to solve equations of motions is briefly discussed. The key content of the present contribution concerns the thorough presentation of some selected numerical simulations, which focus in particular on the propagation of stretch profiles induced by impulsive loads. The study takes into account different tests, by varying the number of unit cells, i.e., the total length of the system, spring stiffnesses, the shape of the impulse, as well as its properties such as duration and peak amplitude, and boundary conditions. Some conjectures about the form of traveling waves are formulated, to be confirmed by both further numerical simulations and analytical investigations.


2018 ◽  
Vol 9 ◽  
pp. 1536-1543 ◽  
Author(s):  
Gitanjali Kolhatkar ◽  
Alexandre Merlen ◽  
Jiawei Zhang ◽  
Chahinez Dab ◽  
Gregory Q Wallace ◽  
...  

We introduce a simple, fast, efficient and non-destructive method to study the optical near-field properties of plasmonic nanotriangles prepared by nanosphere lithography. Using a rectangular Fourier filter on the blurred signal together with filtering of the lower spatial frequencies to remove the far-field contribution, the pure near-field contributions of the optical images were extracted. We performed measurements using two excitation wavelengths (532.1 nm and 632.8 nm) and two different polarizations. After the processing of the optical images, the distribution of hot spots can be correlated with the topography of the structures, as indicated by the presence of brighter spots at the apexes of the nanostructures. This technique is validated by comparison of the results to numerical simulations, where agreement is obtained, thereby confirming the near-field nature of the images. Our approach does not require any advanced equipment and we suggest that it could be applied to any type of sample, while keeping the measurement times reasonably short.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2899 ◽  
Author(s):  
Gael Verao Fernandez ◽  
Philip Balitsky ◽  
Vasiliki Stratigaki ◽  
Peter Troch

For renewable wave energy to operate at grid scale, large arrays of Wave Energy Converters (WECs) need to be deployed in the ocean. Due to the hydrodynamic interactions between the individual WECs of an array, the overall power absorption and surrounding wave field will be affected, both close to the WECs (near field effects) and at large distances from their location (far field effects). Therefore, it is essential to model both the near field and far field effects of WEC arrays. It is difficult, however, to model both effects using a single numerical model that offers the desired accuracy at a reasonable computational time. The objective of this paper is to present a generic coupling methodology that will allow to model both effects accurately. The presented coupling methodology is exemplified using the mild slope wave propagation model MILDwave and the Boundary Elements Methods (BEM) solver NEMOH. NEMOH is used to model the near field effects while MILDwave is used to model the WEC array far field effects. The information between the two models is transferred using a one-way coupling. The results of the NEMOH-MILDwave coupled model are compared to the results from using only NEMOH for various test cases in uniform water depth. Additionally, the NEMOH-MILDwave coupled model is validated against available experimental wave data for a 9-WEC array. The coupling methodology proves to be a reliable numerical tool as the results demonstrate a difference between the numerical simulations results smaller than 5% and between the numerical simulations results and the experimental data ranging from 3% to 11%. The simulations are subsequently extended for a varying bathymetry, which will affect the far field effects. As a result, our coupled model proves to be a suitable numerical tool for simulating far field effects of WEC arrays for regular and irregular waves over a varying bathymetry.


1998 ◽  
Vol 46 (12) ◽  
pp. 2338-2343 ◽  
Author(s):  
K. Yang ◽  
G. David ◽  
S.V. Robertson ◽  
J.F. Whitaker ◽  
L.P.B. Katehi

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shaobo Li ◽  
Shuming Yang ◽  
Fei Wang ◽  
Qiang Liu ◽  
Biyao Cheng ◽  
...  

Abstract Metallic plasmonic probes have been successfully applied in near-field imaging, nanolithography, and Raman enhanced spectroscopy because of their ability to squeeze light into nanoscale and provide significant electric field enhancement. Most of these probes rely on nanometric alignment of incident beam and resonant structures with limited spectral bandwidth. This paper proposes and experimentally demonstrates an asymmetric fiber tip for broadband interference nanofocusing within its full optical wavelengths (500–800 nm) at the nanotip with 10 nm apex. The asymmetric geometry consisting of two semicircular slits rotates plasmonic polarization and converts the linearly polarized plasmonic mode to the radially polarized plasmonic mode when the linearly polarized beam couples to the optical fiber. The three-dimensional plasmonic modulation induces circumference interference and nanofocus of surface plasmons, which is significantly different from the nanofocusing through plasmon propagation and plasmon evolution. The plasmonic interference modulation provides fundamental insights into the plasmon engineering and has important applications in plasmon nanophotonic technologies.


2022 ◽  
Author(s):  
Thi Hong Hiep Le ◽  
Thanh Son Pham ◽  
Bui Xuan Khuyen ◽  
Bui Son Tung ◽  
Quang Minh Ngo ◽  
...  

Abstract In this work, we investigate the propagation of magneto-inductive waves (MIWs) in ordering magnetic metamaterial (MM) structures. The proposed non-homogeneous MM slab consists of 9 × 9 MM unit cells constructed from a five-turn spiral embedded on an FR-4 substrate. External capacitors with the value of 40 pF or 50 pF were added to control the resonant frequency of each unit cell in accordance with the waveguide configurations. The characteristics of metamaterial structures, such as negative permeability, current ratio, transmission response, and field distribution in the waveguide, have been thoroughly analyzed by simulation and experiment. Because of the strong magnetic field confinement in the waveguide, the transmittance after nine elements of the non-homogeneous MM slab is 5.2 times greater than that of the homogeneous MM slab. This structure can be applied to the planar near-field wireless power transfer, position sensor, and low-frequency communication.


2020 ◽  
Vol 148 (1) ◽  
pp. 153-166
Author(s):  
Sebastian T. Prepeliţă ◽  
Javier Gómez Bolaños ◽  
Ville Pulkki ◽  
Lauri Savioja ◽  
Ravish Mehra

Sign in / Sign up

Export Citation Format

Share Document