scholarly journals Sensing Global Changes in the Local Patterns of Energy Consumption in Cities During the Early Stages of the COVID-19 Pandemic

Author(s):  
Francisco Rowe ◽  
Caitlin Robinson ◽  
Nikos Patias

Abstract COVID-19, and the wider social and economic impacts that a global pandemic entails, have led to unprecedented reductions in energy consumption globally. Whilst estimates of changes in energy consumption have emerged at the national scale, detailed sub-regional estimates to allow for global comparisons are less developed. Using night-time light satellite imagery from December 2019-June 2020 across 50 of the world’s largest urban conurbations, we provide high resolution estimates (450m2) of spatio-temporal changes in urban energy consumption in response to COVID-19. Contextualising this imagery with modelling based on indicators of mobility, stringency of government response, and COVID-19 rates, we provide novel insights into the potential drivers of changes in urban energy consumption during a global pandemic. Our results highlight the diversity of changes in energy consumption between and within cities in response to COVID-19, somewhat refuting dominant narratives of a shift in energy demand away from dense urban areas. Further modelling highlights how the stringency of the government’s response to COVID-19 is likely a defining factor in shaping resultant reductions in urban energy consumption.

2018 ◽  
Author(s):  
Sara Torabi Moghadam ◽  
Silvia Coccolo ◽  
Guglielmina Mutani ◽  
Patrizia Lombardi ◽  
Jean Louis Scartezzini ◽  
...  

The spatial visualization is a very useful tool to help decision-makers in the urban planning process to create future energy transition strategies, implementing energy efficiency and renewable energy technologies in the context of sustainable cities. Statistical methods are often used to understand the driving parameters of energy consumption but rarely used to evaluate future urban renovation scenarios. Simulating whole cities using energy demand softwares can be very extensive in terms of computer resources and data collection. A new methodology, using city archetypes is proposed, here, to simulate the energy consumption of urban areas including urban energy planning scenarios. The objective of this paper is to present an innovative solution for the computation and visualization of energy saving at the city scale.The energy demand of cities, as well as the micro-climatic conditions, are calculated by using a simplified 3D model designed as function of the city urban geometrical and physical characteristics. Data are extracted from a GIS database that was used in a previous study. In this paper, we showed how the number of buildings to be simulated can be drastically reduced without affecting the accuracy of the results. This model is then used to evaluate the influence of two set of renovation solutions. The energy consumption are then integrated back in the GIS to identify the areas in the city where refurbishment works are needed more rapidly. The city of Settimo Torinese (Italy) is used as a demonstrator for the proposed methodology, which can be applied to all cities worldwide with limited amount of information.


2020 ◽  
Vol 12 (21) ◽  
pp. 3494
Author(s):  
Cristina Milesi ◽  
Galina Churkina

As urban areas continue to expand and play a critical role as both contributors to climate change and hotspots of vulnerability to its effects, cities have become battlegrounds for climate change adaptation and mitigation. Large amounts of earth observations from space have been collected over the last five decades and while most of the measurements have not been designed specifically for monitoring urban areas, an increasing number of these observations is being used for understanding the growth rates of cities and their environmental impacts. Here we reviewed the existing tools available from satellite remote sensing to study urban contribution to climate change, which could be used for monitoring the progress of climate change mitigation strategies at the city level. We described earth observations that are suitable for measuring and monitoring urban population, extent, and structure; urban emissions of greenhouse gases and other air pollutants; urban energy consumption; and extent, intensity, and effects on surrounding regions, including nearby water bodies, of urban heat islands. We compared the observations available and obtainable from space with the measurements desirable for monitoring. Despite considerable progress in monitoring urban extent, structure, heat island intensity, and air pollution from space, many limitations and uncertainties still need to be resolved. We emphasize that some important variables, such as population density and urban energy consumption, cannot be suitably measured from space with available observations.


2018 ◽  
Vol 145 ◽  
pp. 265-270 ◽  
Author(s):  
Xue Wang ◽  
Qiang Sun ◽  
Guanyuan Wei ◽  
Fengzhang Luo ◽  
Wentao Yang ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1006
Author(s):  
Jing Wang ◽  
Yan Zhang ◽  
Libo Wu ◽  
Weichun Ma ◽  
Limin Chen

About 75% energy demand and emissions all concentrate in urban areas, especially in the metropolises, placing a heavy burden on both the energy supply system and the environment system. To explore low emission pathways and provide policy recommendations for the Shanghai energy system and the environmental system to reach the carbon dioxide (CO2) peak by 2030 and attain emission reduction targets for local air pollutants (LAPs), a regional energy–environment optimization model was developed in this study, considering system costs, socio-economic development and technology. To verify the reliability of the model simulation and evaluate the model risk, a historical scenario was defined to calculate the emissions for 2004–2014, and the data were compared with the bottom-up emission inventory results. By considering four scenarios, we simulated the energy consumption and emissions in the period of 2020–2030 from the perspective of energy policies, economic measures and technology updates. We found that CO2 emissions might exceed the amount of 250 million tons by the end of 2020 under the current policy, and carbon tax with a price of 40 CNY per ton of carbon dioxide is an imperative measure to lower carbon emissions. Under the constraints, the emissions amount of SO2, NOx, PM10, and PM2.5 will be reduced by 95.3–180.8, 207.8–357.1, 149.4–274.5, and 59.5–119.8 Kt in 2030, respectively.


2015 ◽  
Vol 103 ◽  
pp. 884-897 ◽  
Author(s):  
Yan Zhang ◽  
Hongmei Zheng ◽  
Zhifeng Yang ◽  
Jinjian Li ◽  
Xinan Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document