scholarly journals Implementation of an Integrated Health Risk Assessment Coupled with Spatial Interpolation and Source Apportionment: A Case Study of Soil Heavy Metals, China

Author(s):  
Fangfang Miao ◽  
Yimei Zhang ◽  
Yu Li ◽  
Qinglu Fang ◽  
Yinzhuang Zhou

Abstract Soil heavy metal contaminated sites with multiple sources of pollution have caused worldwide public concern. However, the lack of correlation of risk assessment between source identification of heavy metal led to unclear direction of source governance. A methodology was established by combining source apportionment of human health risks with ecological enrichment to characterize source-identified risks of heavy metals based on Ordinary kriging interplotation. Principal component analysis (PCA) and positive matrix factorization (PMF) model were used to identify and classify potential sources of heavy metals synthetically. The integrated results were incorporated into the health risk model to evaluate potential non-carcinogenic and carcinogenic risk of soil heavy metals. A case study was conducted in Suzhou city of China. The results showed that concentrations of Cd and Hg were highly above the background values, accounting for percentages of 239.6% and 415.9% above background values, respectively. The source contributed human health risk index of As contributed 76.9% to non-carcinogenic risk by pollutant sources of agriculture activities. The Non-cancer health risk index for children and adults was 1.08 and 1.00 respectively. The cancer health risk was 3.67E-03 for children and 3.97E-04 for adults. Cr originated from indutriy activities, accounting for 29.5% of total heavy metals, and constituted the largest carcinogenic impact on the population. This study provided a new insight for the treatment of mutil-sources of soil heavy metal pollution and also some reference value for the improvement of the risk assessment system.

2021 ◽  
Vol 11 (29) ◽  
Author(s):  
Shweta Kumari ◽  
Manish Kumar Jain ◽  
Suresh Pandian Elumalai

Background. The rise in particulate matter (PM) concentrations is a serious problem for the environment. Heavy metals associated with PM10, PM2.5, and road dust adversely affect human health. Different methods have been used to assess heavy metal contamination in PM10, PM2.5, and road dust and source apportionment of these heavy metals. These assessment tools utilize pollution indices and health risk assessment models. Objectives. The present study evaluates the total mass and average concentrations of heavy metals in PM10, PM2.5, and road dust along selected road networks in Dhanbad, India, analyzes the source apportionment of heavy metals, and assesses associated human health risks. Methods. A total of 112 PM samples and 21 road dust samples were collected from six stations and one background site in Dhanbad, India from December 2015 to February 2016, and were analyzed for heavy metals (iron (Fe), lead (Pb), cadmium (Cd), nickel (Ni), copper (Cu), chromium (Cr), and zinc (Zn)) using atomic absorption spectrophotometry. Source apportionment was determined using principal component analysis. A health risk assessment of heavy metal concentrations in PM10, PM2.5, and road dust was also performed. Results. The average mass concentration was found to be 229.54±118.40 μg m−3 for PM10 and 129.73 ±61.74 μg m−3 for PM2.5. The average concentration of heavy metals was found to be higher in PM2.5 than PM10. The pollution load index value of PM10 and PM2.5 road dust was found to be in the deteriorating category. Vehicles were the major source of pollution. The non-carcinogenic effects on children and adults were found to be within acceptable limits. The heavy metals present in PM and road dust posed a health risk in the order of road dust> PM10> and PM2.5. Particulate matter posed higher health risks than road dust due to particle size. Conclusions. The mass concentration analysis indicates serious PM10 and PM2.5 contamination in the study area. Vehicle traffic was the major source of heavy metals in PM10, PM2.5, and road dust. In terms of non-carcinogenic risks posed by heavy metals in the present study, children were more affected than adults. The carcinogenic risk posed by the heavy metals was negligible. Competing Interests. The authors declare no competing financial interests


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11853
Author(s):  
Xingyong Zhang ◽  
Qixin Wu ◽  
Shilin Gao ◽  
Zhuhong Wang ◽  
Shouyang He

Heavy metals are released into the water system through various natural processes and anthropogenic activities, thus indirectly or directly endangering human health. The distribution, source, water quality and health risk assessment of dissolved heavy metals (V, Mn, Fe, Co, Ni, Zn, As, Mo, Sb) in major rivers in Wuhan were analyzed by correlation analysis (CA), principal component analysis (PCA), heavy metal pollution index (HPI), hazard index (HI) and carcinogenic risk (CR). The results showed that the spatial variability of heavy metal contents was pronounced. PCA and CA results indicated that natural sources controlled Mn, Fe, Co, Ni and Mo, and industrial emissions were the dominant factor for V, Zn and Sb, while As was mainly from the mixed input of urban and agricultural activities. According to the heavy metal pollution index (HPI, ranging from 23.74 to 184.0) analysis, it should be noted that As and Sb contribute most of the HPI values. The health risk assessment using HI and CR showed that V and Sb might have a potential non-carcinogenic risk and As might have a potential carcinogenic risk to adults and children in the study area (CR value exceeded target risk 10−4). At the same time, it was worth noting that As might have a potential non-carcinogenic risk for children around QLR (HI value exceeded the threshold value 1). The secular variation of As and Sb should be monitor in high-risk areas. The results of this study can provide important data for improving water resources management efficiency and heavy metal pollution prevention in Wuhan.


2020 ◽  
Vol 14 (3) ◽  
pp. 420-429
Author(s):  
Guiping Xu ◽  
Chaobing Deng ◽  
Wei Guo ◽  
Hongxiang Zhu ◽  
Xiaofei Wang ◽  
...  

Seven varieties of sugarcane were grown on soil polluted with heavy metals, including Pb, Cd, and As. Sugarcane growth, the heavy metal contents in different sugarcane tissues, and the subcellular distributions of the heavy metals in the roots and leaves were analyzed. The purpose of this investigation was to study sugarcane growth tolerance, the accumulation of heavy metals and the mechanism of sugarcane tolerance to heavy metals at the subcellular level. Health risk assessments were performed according to the models recommended by the United States Environmental Protection Agency (US EPA). The patterns of heavy metal storage were demonstrated to differ among different tissues in all sugarcane varieties investigated. Most of the heavy metals that were absorbed accumulated in the roots of the sugarcane, and the heavy metals in the root cells were mostly located in the cell wall. The health risk index was used to analyze the juice and indicated that the consumption of sugarcane juice by adults and children posed no significant health risks. This study shows that sugarcane grown on heavy metal-contaminated farmland is safe for consumption. The results of this study revealed an important and positive implication regarding the cultivation of sugarcane on farmland that is polluted by heavy metals and the potential to simultaneously achieve sustainable economic output and potential environmental restoration.


Author(s):  
Nnamdi M. Ahiamadu ◽  
Ify L. Nwaogazie ◽  
Yussuf O. L. Momoh

This study was carried out to assess the human health risk associated with a crude oil spill site in Emohua Local Government Area of Rivers State,  Niger Delta. The Total Content and Fraction’s approaches were adopted to assess the human health risk. Total Content approach was carried out by comparing the concentration of various contaminants in the environmental media studied with the Intervention Values prescribed while the Fractions approach was carried out using RBCA Toolkit for Chemical Releases version 2.6. The results indicate that concentration indices for Total Petroleum Hydrocarbon (TPH) and Polycyclic Aromatic Hydrocarbon (PAH) were greater than the acceptable limit of 1.0 for both the maximum and mean concentrations in soil and groundwater, indicating unacceptable risk at this site. The result from the Fraction’s approach showed that carcinogenic risks are identified for the site through the soil and grounwater exposure pathways as the Total Risk Values for soil (1.7 x10-3) and groundwater (5.6 x 10-1) are higher than the target risk of 1.0 x 10-5 while toxic effects risks are identified for all pathways in the site with Total Health Risk Index for all four pathways greater than the applicable limit of 1.0. Ingestion of groundwater for carcinogenic risk with risk value 5.6 x 10-1 and inhalation of indoor air for non-carcinogenic risk Health Risk Index of 1.0 x104 are identified as the major contributing exposure pathways at this study site. It was therefore concluded that the study site poses unacceptable risk to human health and needs immediate intervention.


Author(s):  
G. M. Mafuyai ◽  
S. Ugbidye ◽  
G. I. Ezekiel

The water range from Pb (1.439 – 1.715), Cu (0.234 – 0.377), Cd (0.838 – 1.346), Zn (0.448 – 1.110), Cr (0.144 – 0.794), Mn (0.777 – 2.011) and As (0.584 – 1.341) mg/L.  The range in soil was Pb (67.5 – 120), Cu (8.51 – 32.5), Cd (0.21 – 1.72), Zn (70.8 – 85.6), Cr (15.8 – 29.5), Mn (14.6 – 19.1) and As (52.0 – 198) mg/kg and  in the vegetables in the range of Pb (0.177 – 0.545), Cu (0.073 – 0.748), Cd (0.005 – 0.019), Zn (0.264 – 0.915), Cr (0.089 – 0.158), Mn (0.162 – 0.253) and As (0.032 – 0.245) mg/kg. The study shows that the transfer coefficient of the heavy metals to vegetable was less than one (< 1). The estimated daily intake (DIM) of heavy metals from vegetables irrigated with tin mine pond water were in the order: Cd > Zn > Mn > Cr > Cu > Pb > As.  The health risk index (HRI) of all the studied heavy metals indicated that all vegetables were safe with no risk to human health except for Cd.  health risk assessment of heavy metals in consumption of vegetables irrigated with tin mine pond water in Jos - South, Plateau State


2020 ◽  
Vol 22 (6) ◽  
pp. 1408-1422 ◽  
Author(s):  
Yuling Jiang ◽  
Jianhua Ma ◽  
Xinling Ruan ◽  
Xing Chen

The concentrations of the heavy metals Hg, As, Ni, Pb, Cd, Cr, Cu and Zn in soil, groundwater, air, and locally produced grain (wheat and corn) and vegetables were determined in a village near a battery factory in Xinxiang, Henan Province, China.


2021 ◽  
Author(s):  
Fangfang Miao ◽  
Yimei Zhang ◽  
Shuai Li ◽  
Yaxiao Duan ◽  
Yuxian Lai ◽  
...  

Abstract Soil heavy metal contaminated sites with multiple sources of pollution have caused worldwide public concern. However, the lack of correlation of risk assessment or source identification of heavy metal leads to unclear direction of source governance. Although previous studies have involved different risk assessment, few attempts have been made to establish a link between them. In order to design a comprehensive risk assessment system, it is necessary to identify the specific source risks and the correlation and comparison between environmental risk assessment. In this paper, a methodology was established by combining source apportionment of ecological risks and human health risks (SERA) to characterize the sources and source-specific risks of heavy metals in soil. Positive matrix factorization (PMF) model was used to identify and classify potential sources of heavy metals in the study area. According to the results, they will be incorporated into the environmental risk model to evaluate environmental risk of the identified sources of heavy metals. The results showed that concentrations of Cd and Hg were highly above the background values, indicating a moderate enrichment. It was worth noting that the source contributed ecological risk index (SCEI) of Hg, with the value of 51.16 contributed mainly by the pollutant sources of waste treatment, has reached moderate ecological risk. The SCEI of Cd contributed by industrial activities (the wastewater and dyeing process) showed the most predominant source of contribution. The source contributed human health risk index (SCHI) of As contributed most by pollutant sources of agriculture activities. Overall, the modified total health risk posed by soil heavy metals SCHI was 1.11E+00, showing potential risk to the residents. This study provides a new insight for the treatment of mutil-sources of soil heavy metal pollution and also some reference value for the improvement of the risk assessment system.the main finding: Exploring a methodology (SERA) to quantitatively characterize the relationship between pollutants sources and environmental risk assessment based on source contribution.


Sign in / Sign up

Export Citation Format

Share Document