scholarly journals Lipopolysaccharide Acting Via Toll Like Receptor 4 Transactivates The TGF-β Receptor in Vascular Smooth Muscle cells

Author(s):  
Rizwana Afroz ◽  
Hirushi Kumarapperuma ◽  
Raafat Mohamad ◽  
Peter J Little ◽  
Danielle Kamato

Abstract Toll-like receptors (TLRs) recognise pathogen‑associated molecular patterns, which allow the detection of microbial infection by host cells. Bacterial derived toxin lipopolysaccharide activates TLR4 and leads to the activation of the Smad2 transcription factor. The phosphorylation of the Smad2 transcription factor is the result of the activation of the transforming growth factor-β receptor 1 (TGFBR1). Therefore, we sought to investigate LPS via TLR4 mediated Smad2C phosphorylation dependent on the (trans)activation of the TGFBR1. The invitro used human aortic vascular smooth muscle cells (HA-VSMCs) to assess the implications of TLR4 (trans)activation of the TGFBR1 in vascular pathophysiology. We show that LPS mediated Smad2 carboxy-terminal phosphorylation is inhibited in the presence of TGFBR1 inhibitor SB431542 in HA-VSMCs. Treatment with MyD88 and TRIF pathways antagonists does not affect LPS mediated phosphorylation of Smad2C; however, LPS mediated Smad2 phosphorylation was inhibited in the presence of MMP inhibitor, GM6001 and unaffected in the presence of ROCK inhibitor Y27632. LPS via transactivation of the TGFBR1 stimulates PAI-1 mRNA expression. TLRs are first in line to respond to exogenous invading substances and endogenous molecules; our findings characterise a novel signalling pathway in the context of cell biology. Identifying TLR transactivation of the TGFBR1 may provide future insight into the detrimental implications of pathogens in pathophysiology.

2010 ◽  
Vol 298 (1) ◽  
pp. C191-C201 ◽  
Author(s):  
George M. Risinger ◽  
Dawn L. Updike ◽  
Elizabeth C. Bullen ◽  
James J. Tomasek ◽  
Eric W. Howard

During platelet-derived growth factor (PDGF)-BB-mediated recruitment to neovascular sprouts, vascular smooth muscle cells (VSMCs) dedifferentiate from a contractile to a migratory phenotype. This involves the downregulation of contractile markers such as smooth muscle (SM) α-actin and the upregulation of promigration genes such as matrix metalloproteinase (MMP)-2. The regulation of MMP-2 in response to PDGF-BB is complex and involves both stimulatory and inhibitory signaling pathways, resulting in a significant delay in upregulation. Here, we provide evidence that the delay in MMP-2 upregulation may be due to the autocrine expression and activation of transforming growth factor (TGF)-β, which is known to promote the contractile phenotype in VSMCs. Whereas PDGF-BB could induce the loss of stress fibers and focal adhesions, TGF-β was able to block or reverse this transition to a noncontractile state. TGF-β did not, however, suppress early signaling events stimulated by PDGF-BB. Over time, though PDGF-BB induced increased TGF-β1 levels, it suppressed TGF-β2 and TGF-β3 expression, leading to a net decrease in the total TGF-β pool, resulting in the upregulation of MMP-2. Together, these findings indicate that MMP-2 expression is suppressed by a threshold level of active TGF-β, which in turn promotes a contractile VSMC phenotype that prevents the upregulation of MMP-2.


1997 ◽  
Vol 272 (6) ◽  
pp. C1836-C1843 ◽  
Author(s):  
P. L. Tharaux ◽  
A. Stefanski ◽  
S. Ledoux ◽  
J. M. Soleilhac ◽  
R. Ardaillou ◽  
...  

We recently reported that neutral endopeptidase (NEP) expression on renal vascular smooth muscle cells (VSMC) was downregulated in the presence of serum. Here we examine the role of epidermal growth factor (EGF) and transforming growth factor-beta 1 (TGF-beta) in this downregulation and the consequences of the changes in NEP activity on their mitogenic effects. EGF inhibited NEP activity, whereas TGF-beta was stimulatory. Expression of the enzyme was studied by measuring the binding of [125I]RB-104, a specific NEP inhibitor, and the fluorescence intensity of NEP-labeled cells. Both parameters were decreased by EGF and were increased by TGF-beta. NEP mRNA expression in EGF-treated cells was reduced after 48 h. In contrast, it was increased in TGF-beta-treated cells. Interestingly, NEP inhibition influenced the mitogenic effect of EGF. Indeed, thiorphan, an NEP inhibitor, and an anti-NEP antibody decreased EGF-dependent [3H]thymidine incorporation and cell proliferation by approximately 50%. TGF-beta had no effect on VSMC growth. These results indicate that EGF but not TGF-beta participates in the downregulatory potency of serum on NEP expression in VSMC. They also demonstrate that the full effect of EGF on VSMC proliferation depends on intact NEP activity.


Sign in / Sign up

Export Citation Format

Share Document