scholarly journals Effects of repetitive magnetic stimulation on motor function and expression of GAP-43 and 5-HT in rats with spinal cord injury

2020 ◽  
Author(s):  
Hao Liu ◽  
Deqi Xiong ◽  
Wenchun Wang ◽  
Li Yuan ◽  
Rizhao Pang ◽  
...  

Abstract Objectives: Spinal cord injury (SCI) is a disastrous central nervous system (CNS) disorder. The aim of this study was to explore the effects of repetitive trans-spinal magnetic stimulation (rTSMS) act on different segments of the spinal cord on movement function and expression of GAP43 and 5-HT in rats after acute cord injury and to preliminarily discuss the best treatment site of rTSMS, so as to provide theoretical foundation and experimental evidence for the clinical application of rTSMS in spinal cord injury. Methods: In the present study, we used a rat model of T10 laminectomy with transient violent oppression by aneurysm clip. The rats were classified into A group (sham surgery), B group (acute SCI without stimulation), C group (T6 segment stimulation), D group (T10 segment stimulation) and E group (L2 segment stimulation). Results: In vivo the magnetic stimulation was found to protect motor function and alleviate myelin sheath damage, decrease the expression levels of NgR and Nogo-A, increase the expression levels of growth-associated protein-43 (GAP43) and 5-hydroxytryptamine (5-HT), and inhibite TUNEL-positive cells as well as the expressions of apoptosis-related protein of rats following 8 weeks post-operation.Conclusions: This study suggests that rTSMS can promote the expression of GAP-43 and 5-HT and axonal regeneration in the spinal cord which is beneficial to the recovery of motor function after acute spinal cord injury.

2020 ◽  
Vol 48 (12) ◽  
pp. 030006052097076
Author(s):  
Hao Liu ◽  
Deqi Xiong ◽  
Rizhao Pang ◽  
Qian Deng ◽  
Nianyi Sun ◽  
...  

Objectives Spinal cord injury (SCI) is a disabling central nervous system disorder. This study aimed to explore the effects of repetitive trans-spinal magnetic stimulation (rTSMS) of different spinal cord segments on movement function and growth-associated protein-43 (GAP43) and 5-hydroxytryptamine (5-HT) expression in rats after acute SCI and to preliminarily discuss the optimal rTSMS treatment site to provide a theoretical foundation and experimental evidence for clinical application of rTSMS in SCI. Methods A rat T10 laminectomy SCI model produced by transient application of an aneurysm clip was used in the study. The rats were divided into group A (sham surgery), group B (acute SCI without stimulation), group C (T6 segment stimulation), group D (T10 segment stimulation), and group E (L2 segment stimulation). Results In vivo magnetic stimulation protected motor function, alleviated myelin sheath damage, decreased NgR and Nogo-A expression levels, increased GAP43 and 5-HT expression levels, and inhibited terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells and apoptosis-related protein expression in rats at 8 weeks after the surgery. Conclusions This study suggests that rTSMS can promote GAP43 and 5-HT expression and axonal regeneration in the spinal cord, which is beneficial to motor function recovery after acute SCI.


2017 ◽  
Vol 43 (2) ◽  
pp. 481-491 ◽  
Author(s):  
Yihui Bi ◽  
Yapeng Zhu ◽  
Mingkai Zhang ◽  
Keke Zhang ◽  
Xingyi Hua ◽  
...  

Background/Aims: Shikonin, a compound extracted from Zicao, has been demonstrated to hold anti-bacterial, anti-inflammatory, and anti-tumor activities in various diseases and it has been shown to protect human organs from injuries. However, the effect of shikonin on the recovery of spinal cord injury (SCI) remains unknown. This study was designed to estimate the potential therapeutic effect and underlying mechanism of shikonin on SCI in vivo. Methods: In the study, we used HE staining, ELISA assay, transfection assay, TUNEL assay, real time PCR and Western blot to detect the effects of shikonin on spinal cord injury in rats. Results: we showed that shikonin could promote the recovery of motor function and tissue repair after SCI treatment in rats SCI model. Moreover, we demonstrated that shikonin inhibited the spinal cord edema in SCI model of rats. According to further investigation, shikonin induced the reduction of inflammatory response through decreasing the expression levels of HMGB1, TLR4 and NF-κB after SCI injury. In addition, we also found that shikonin could suppress the apoptosis and expression of caspase-3 protein in SCI model of rats. Conclusion: Our results demonstrated that shikonin induced the recovery of tissue repair and motor function via inactivation of HMGB1/TLR4/NF-κB signaling pathway in SCI model of rats. Meanwhile, shikonin regulated the inflammation response in SCI by suppressing the HMGB1/TLR4/NF-κB signaling pathway. The described mechanism sheds novel light on molecular signaling pathway in spinal cord injury and secondary injury including inflammatory response.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Wei Song ◽  
Guiyun Song ◽  
Can Zhao ◽  
Xiaoguang Li ◽  
Xiaojiao Pei ◽  
...  

The purpose of this study was to assess the pathological variation in white matter tracts in the adult severe thoracic contusion spinal cord injury (SCI) rat models combined with in vivo magnetic resonance imaging (MRI), as well as the effect of spared white matter (WM) quantity on hindlimb motor function recovery. 7.0T MRI was conducted for all experimental animals before SCI and 1, 3, 7, and 14 days after SCI. The variation in the white matter tract in different regions of the spinal cord after SCI was examined by luxol fast blue (LFB) staining, NF200 immunochemistry, and diffusion tensor imaging (DTI) parameters, including fraction anisotropy, mean diffusivity, axial diffusion, and radial diffusivity. Meanwhile, Basso-Beattie-Bresnahan (BBB) open-field scoring was performed to evaluate the behavior of the paraplegic hind limbs. The quantitative analysis showed that spared white matter measures assessed by LFB and MRI had a close correlation (R2 = 0.8508). The percentage of spared white matter area was closely correlated with BBB score (R2 = 0.8460). After SCI, spared white matter in the spinal cord, especially the ventral column WM, played a critical role in motor function restoration. The results suggest that the first three days provides a key time window for SCI protection and treatment; spared white matter, especially in the ventral column, plays a key role in motor function recovery in rats. Additionally, DTI may be an important noninvasive technique to diagnose acute SCI degree as well as a tool to evaluate functional prognosis. During the transition from nerve protection toward clinical treatment after SCI, in vivo DTI may serve as an emerging noninvasive technique to diagnose acute SCI degree and predict the degree of spontaneous functional recovery after SCI.


2019 ◽  
Vol 121 (4) ◽  
pp. 1352-1367 ◽  
Author(s):  
Shihao Lin ◽  
Yaqing Li ◽  
Ana M. Lucas-Osma ◽  
Krishnapriya Hari ◽  
Marilee J. Stephens ◽  
...  

Spinal cord injury leads to a devastating loss of motor function and yet is accompanied by a paradoxical emergence of muscle spasms, which often involve complex muscle activation patterns across multiple joints, reciprocal muscle timing, and rhythmic clonus. We investigated the hypothesis that spasms are a manifestation of partially recovered function in spinal central pattern-generating (CPG) circuits that normally coordinate complex postural and locomotor functions. We focused on the commissural propriospinal V3 neurons that coordinate interlimb movements during locomotion and examined mice with a chronic spinal transection. When the V3 neurons were optogenetically activated with a light pulse, a complex coordinated pattern of motoneuron activity was evoked with reciprocal, crossed, and intersegmental activity. In these same mice, brief sensory stimulation evoked spasms with a complex pattern of activity very similar to that evoked by light, and the timing of these spasms was readily reset by activation of V3 neurons. Given that V3 neurons receive abundant sensory input, these results suggest that sensory activation of V3 neurons is alone sufficient to generate spasms. Indeed, when we silenced V3 neurons optogenetically, sensory evoked spasms were inhibited. Also, inhibiting general CPG activity by blocking N-methyl-d-aspartate (NMDA) receptors inhibited V3 evoked activity and associated spasms, whereas NMDA application did the opposite. Furthermore, overwhelming the V3 neurons with repeated optogenetic stimulation inhibited subsequent sensory evoked spasms, both in vivo and in vitro. Taken together, these results demonstrate that spasms are generated in part by sensory activation of V3 neurons and associated CPG circuits. NEW & NOTEWORTHY We investigated whether locomotor-related excitatory interneurons (V3) play a role in coordinating muscle spasm activity after spinal cord injury (SCI). Unexpectedly, we found that these neurons not only coordinate reciprocal motor activity but are critical for initiating spasms, as well. More generally, these results suggest that V3 neurons are important in initiating and coordinating motor output after SCI and thus provide a promising target for restoring residual motor function.


2021 ◽  
pp. 096032712110033
Author(s):  
Liying Fan ◽  
Jun Dong ◽  
Xijing He ◽  
Chun Zhang ◽  
Ting Zhang

Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.


Sign in / Sign up

Export Citation Format

Share Document