scholarly journals Hydrodynamic manipulation of nano-objects by optically induced thermo-osmotic flows

Author(s):  
Martin Fränzl ◽  
Frank Cichos

Abstract The manipulation of nano-objects at the microscale is of great technological significance to construct new functional materials, to manipulate tiny amounts of liquids, to reconfigure sensorial systems or to detect minute concentrations of analytes in medical screening. It is commonly approached by the generation of potential energy landscapes, for example, with optical fields or by using pressure driven microfluidics. Here we show that strong hydrodynamic boundary flows enable the trapping and manipulation of nano-objects near surfaces. These thermo-osmotic flows are induced by modulating the van der Waals interaction at a solid-liquid interface with optically generated temperature fields. We use a thin gold film on a glass substrate to provide localized but reconfigurable point-like optical heating. Convergent boundary flows with velocities of tens of micrometres per second are observed and substantiated by a quantitative physical model. The hydrodynamic forces acting on suspended nanoparticles and attractive van der Waals or depletion induced forces enable precise positioning and guiding of the nanoparticles. Fast multiplexing of flow fields further provides the means for parallel manipulation of many nano-objects and the generation of complex flow fields. Our findings have direct consequences for the field of plasmonic nano-tweezers as well as other thermo-plasmonic trapping schemes and pave the way for a general scheme of nanoscopic manipulation with boundary flows.

Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


Author(s):  
M. J. Braun ◽  
R. C. Hendricks ◽  
V. Canacci

A method to visualize and characterize the complex flow fields in simulated brush seals is presented. The brush seal configuration was tested in a water and then in an oil tunnel. The visualization procedure revealed typical regions that are rivering, jetting, vortical or lateral flows and exist upstream, downstream or within the seal. Such flows are engendered by variations in fiber void that are spatial and temporal and affect changes in seal leakage and stability. While the effects of interface motion for linear or cylindrical configurations have not been considered herein, it is believed that the observed flow fields characterize flow phenomenology in both circular and linear brush seals. The axial pressure profiles upstream, across and downstream of the brush in the oil tunnel have been measured under a variety of inlet pressure conditions and the ensuing pressure maps are presented and discussed.


Author(s):  
Leiyong Jiang

The flow fields of a combustor cooling wiggle strip and its corresponding simplified slot with conjugate heat transfer have been studied numerically. The effects of geometrical simplification on the flow fields have been analysed qualitatively and quantitatively. It is found that its effects on the flow velocity and temperature fields are limited to local regions near the cooling element, and are negligible in the far field. However, the simplification shows a considerable effect on the combustor liner temperature near the cooling element, about 8.5% of the average temperature across the cooling element. In short, using the simplified slot to replace the cooling wiggle strip in gas turbine combustor modeling is an acceptable practice if accurate liner temperature prediction is not required.


Author(s):  
Kozo Fujii ◽  
Akira Oyama ◽  
Nobuyuki Tsuboi ◽  
Moto Tsukada ◽  
Hirofumi Ouchi ◽  
...  

Flow fields of Mach number 2.2 jet impinging on an inclined flat plate are experimentally investigated using the Pressure Sensitive Paints (PSP) and Schlieren flow visualization. The flow filed structure is mainly determined by two geometrical parameters (nozzle-plate distance and plate angle against the jet) and one flow parameter (pressure ratio). The results suggest that all the observed flow fields can actually be classified into three types of flow structure based on the three parameters above. As an extension of the authors’ earlier work, experiments are carried out for higher plate angles. The new results show the effectiveness and limitation of the classification that we proposed. To find out the flow structure, some of the flow fields are computationally simulated. Good agreement of the pressure distributions with the experiment validates the simulation. Although analysis so far is limited, the result reveals three dimensional complex flow structure that created pressure peaks over the plate surface.


Polymer ◽  
2001 ◽  
Vol 42 (13) ◽  
pp. 5651-5659 ◽  
Author(s):  
Concetta Testa ◽  
Immacolata Sigillo ◽  
Nino Grizzuti

Sign in / Sign up

Export Citation Format

Share Document