Effect of longitudinal magnetic field on grain growth of hollow stud welded joint

Author(s):  
Wei Bai ◽  
DeKu Zhang ◽  
Hong yu Yin ◽  
KeHong Wang

Abstract Aiming at the defects of large diameter hollow stud welding such as arc blow and incomplete fusion,drawn arc stud welding with the longitudinal magnetic field was used to 30CrNi3MoV steel and Q235 stud. The grain growth process of joint was studied. With the assistance of longitudinal magnetic field, the arc action area on the end face of the hollow stud was increased, and the end face of stud was melted evenly. The solidification and crystallization process of molten pool was changed due to magnetic field stirring. Within a certain range, the microstructure of the joint is gradually refined and the size is homogeneous with the increase of magnetic field. But too large current can be attributed to the very coarse grain structure. Besides, the proportion of small angle grain boundary was decreased during appropriate magnetic field current, while the proportion of large angle grain boundary was increased. Meanwhile, preferred orientation of grains of the joints was changed due to the magnetic stirring.

Metals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 370
Author(s):  
Chih-Ting Lai ◽  
Hsuan-Hao Lai ◽  
Yen-Hao Su ◽  
Fei-Ya Huang ◽  
Chi-Kang Lin ◽  
...  

In this study, the effects of the addition of Mg to the grain growth of austenite and the magnesium-based inclusions to mobility were investigated in SS400 steel at high temperatures. A high-temperature confocal scanning laser microscope (HT-CSLM) was employed to directly observe, in situ, the grain structure of austenite under 25 torr Ar at high temperatures. The grain size distribution of austenite showed the log-normal distribution. The results of the grain growth curves using 3D surface fitting showed that the n and Q values of the growth equation parameters ranged from 0.2 to 0.26 and from 405 kJ/mole to 752 kJ/mole, respectively, when adding 5.6–22 ppm of Mg. Increasing the temperature from 1150 to 1250 °C for 20 min and increasing the addition of Mg by 5.6, 11, and 22 ppm resulted in increases in the grain boundary velocity. The effects of solute drag and Zener pinning on grain boundary mobility were also calculated in this study.


2000 ◽  
Vol 652 ◽  
Author(s):  
Melik C. Demirel ◽  
Andrew P. Kuprat ◽  
Denise C. George ◽  
Bassem S. El-Dasher ◽  
Neil N. Carlson ◽  
...  

ABSTRACTGrain boundary and crystallographic orientation information of an Al-foil with a columnar grain structure is characterized by Electron Backscattered Diffraction (EBSD) technique. The starting microstructure and grain boundary properties are implemented as an input for the three- dimensional grain growth simulation. In the computational model, minimization of the interface energy is the driving force for the grain boundary motion. The computed evolved microstructure is compared with the final experimental microstructure, after annealing at 550 °C. Good agreement is observed between the experimentally obtained microstructure and the simulated microstructure. The constitutive description of the grain boundary properties was based on a 1- parameter characterization of the variation in mobility with misorientation angle.


2007 ◽  
Vol 539-543 ◽  
pp. 2793-2797 ◽  
Author(s):  
W.P. Tong ◽  
L.M. Wang ◽  
G.J. Ma ◽  
N.R. Tao ◽  
Liang Zuo

A nanostructured surface layer on a pure iron sample was prepared by surface mechanical attrition treatment (SMAT). The thermal stability of SMAT sample was investigated at different temperatures with or without a high magnetic field (H =12T). It was found that a high magnetically annealing enhanced grain growth at the early stage of annealing, and produced a uniform nanocrystalline grain structure. After homogeneous grains developed, further grain growth became restrained.


2001 ◽  
Vol 2001.36 (0) ◽  
pp. 132-133
Author(s):  
Qiongshu WANG ◽  
Takashi MATSUZAKI ◽  
Koichi KAWAHARA ◽  
Sadahiro TSUREKAWA ◽  
Tadao WATANABE

2004 ◽  
Vol 819 ◽  
Author(s):  
Katayun Barmak ◽  
Wayne E. Archibald ◽  
Anthony D. Rollett ◽  
Shlomo Ta'asan ◽  
David Kinderlehrer

AbstractRelative grain boundary energy as a function of misorientation angle has been measured in cube-oriented, i.e., <100> fiber-textured, 120 [.proportional]m-thick Al foil using orientation imaging microscopy and a statistical multiscale method. The energies of low-angle boundaries increase with misorientation angle, in good agreement with the Read-Shockley model. The relative energies of high-angle boundaries exhibit little variation with misorientation. Examination of the grain structure of <111> fiber-textured, 100 nm-thick Al films annealed at 400°C for 0.5-10 h shows 5 and 6 sided grains to be the most frequent, and the fraction of four-sided grains to be significant. The mean number of sides is slightly lower than the expected value of 6 for two- dimensional structures. Of lognormal, gamma and Rayleigh distributions, gamma gives the best fit to the grain size data in the films; however, the difference between gamma and lognormal is small. Grain growth is not self-similar and stagnates after one hour of annealing. The evolution of the grain size distribution with time indicates that the growth stagnation in the films is neither consistent with boundary pinning by grooving nor with conventional treatments of solute drag. Surface, elastic-strain and plastic-strain energy driving forces do not play a significant role in the grain growth and the subsequent stagnation since the films are strongly textured even in the as- deposited state. The steady-state distributions of reduced grain area for two-dimensional, Monte Carlo and partial differential equation based simulations show excellent agreement with each other, even when anisotropic boundary energies are used. However, comparison with experimental distributions reveals a significantly higher population of small grains in the experiments.


2013 ◽  
Vol 49 (11) ◽  
pp. 3875-3884 ◽  
Author(s):  
Dmitri A. Molodov ◽  
Christoph Günster ◽  
Günter Gottstein

2003 ◽  
Vol 788 ◽  
Author(s):  
T. Matsuzaki ◽  
T. Yamada ◽  
K. Jyuami ◽  
S. Tsurekawa ◽  
T. Watanabe ◽  
...  

ABSTRACTThe effects of DC and AC magnetic fields on grain growth in electrodeposited nanocrystalline nickel were studied. Magnetic annealing was conducted at 573K in the ferromagnetic temperature region and at 693K in the paramagnetic temperature region. Both DC and AC magnetic annealing could enhance the grain growth and produced a homogeneous grain structure at 573K. On the other hand, AC magnetic annealing shortened the incubation time for the late stage abnormal grain growth at 693K in the paramagnetic temperature region, while DC magnetic field could not affect the incubation time.


2005 ◽  
Vol 495-497 ◽  
pp. 1151-1158 ◽  
Author(s):  
Tadao Watanabe ◽  
Sadahiro Tsurekawa ◽  
H. Fujii ◽  
T. Kanno

This paper gives an overview of our recent works on the effect of magnetic annealing, i.e. annealing in a magnetic field, on the evolution of texture and grain boundary microstructure in ultra-fine grained and nanocrystalline magnetic materials differently produced; rapidly solidified Fe-6.5mass%Si ribbons, electrodeposited nanocrystalline nickel, and nanocrystalline Fe78Si9B13 alloy ribbon crystallized from the amorphous state. It was found that the effect of magnetic annealing was powerful and useful for controlling grain growth resulting in the evolution of different types of texture and grain boundary microstructure, depending on the condition of magnetic annealing. In particular, the magnetic crystallization of amorphous Fe78Si9B13 alloy was found to be powerful for producing a nanocrystalline material with a sharp texture and a special grain boundary microstructure.


1991 ◽  
Vol 225 ◽  
Author(s):  
D. T. Walton ◽  
H. J. Frost ◽  
C. V. Thompson

ABSTRACTMicrostructural evolution in thin-film strips is of interest due to the direct effect of grain structure on integrated circuit interconnect reliability and resistance to electromigration-induced failure. We have explored the evolution of interconnect grain structure via a two-dimensional grain growth simulation. We focus on the strip's transformation to the bamboo structure, in which individual grains traverse the width of the strip. We find that the approach to a fully bamboo structure is exponential, and that the rate of transformation is inversely proportional to the square of the strip width. When the simulation is extended to model grain boundary pinning due to grooving at grain boundary – free surface intersections, we find that there exists a maximum strip width to thickness ratio beyond which the transformation to the bamboo structure does not proceed to completion. By using our simulation results in conjunction with a “failure unit” model for electromigration-induced failure [4] we are able to reproduce the experimentally observed abrupt increase in time-to-failure below a critical strip width, and also model the reliability as a function of annealing conditions.


Sign in / Sign up

Export Citation Format

Share Document