scholarly journals Markers of memory CD8 T cells depicting the effect of the BNT162b2 mRNA COVID-19 vaccine in Japan

Author(s):  
Hiroyuki Kondo ◽  
Takahiro Kageyama ◽  
Shigeru Tanaka ◽  
Shin-ichi Tsukumo ◽  
Kunihiro Otsuka ◽  
...  

Abstract BNT162b2, a nucleoside-modified mRNA vaccine for SARS-CoV-2 spike glycoprotein (S), provides approximately 95% efficacy for preventing COVID-19. However, it remains unclear how effectively memory CD8+ T cells are generated and which genetic and environmental factors affect the generation and function of memory CD8+ T cells elicited by this vaccine. Here, we investigated the frequency and functions of memory CD8+ T cells 3 weeks after the second vaccination in the Japanese population. Using a peptide-MHC pentamer, we detected an increased number of memory CD8+ T cells in females compared with that in males, but the frequency of pentamer-positive cells was not correlated with antibody titers. Memory precursor effector cells (KLRG1-CD127+) among both CD8+ cells and pentamer+ cells and effector cells (CD38-HLA-DR+) among pentamer+ cells were more abundant in females than in males. Upon S protein-mediated stimulation of T cells, the intensity of CD107a and granzyme B expression was increased in females compared with that in males, indicating stronger memory CD8+ T cell responses in females than in males. Our studies showed that the BNT162b2 vaccine elicits increased memory CD8+ T cell proliferation and secondary CTL responses in females compared with those in males in the Japanese population. These findings provide an important basis for the distinct sex difference in cellular immune responses to mRNA vaccination and suggest that memory precursor effector cells can be a simple marker to evaluate and boost cellular immunity induced by BNT162b2.

2017 ◽  
Vol 214 (6) ◽  
pp. 1593-1606 ◽  
Author(s):  
Hossam A. Abdelsamed ◽  
Ardiana Moustaki ◽  
Yiping Fan ◽  
Pranay Dogra ◽  
Hazem E. Ghoneim ◽  
...  

Antigen-independent homeostasis of memory CD8 T cells is vital for sustaining long-lived T cell–mediated immunity. In this study, we report that maintenance of human memory CD8 T cell effector potential during in vitro and in vivo homeostatic proliferation is coupled to preservation of acquired DNA methylation programs. Whole-genome bisulfite sequencing of primary human naive, short-lived effector memory (TEM), and longer-lived central memory (TCM) and stem cell memory (TSCM) CD8 T cells identified effector molecules with demethylated promoters and poised for expression. Effector-loci demethylation was heritably preserved during IL-7– and IL-15–mediated in vitro cell proliferation. Conversely, cytokine-driven proliferation of TCM and TSCM memory cells resulted in phenotypic conversion into TEM cells and was coupled to increased methylation of the CCR7 and Tcf7 loci. Furthermore, haploidentical donor memory CD8 T cells undergoing in vivo proliferation in lymphodepleted recipients also maintained their effector-associated demethylated status but acquired TEM-associated programs. These data demonstrate that effector-associated epigenetic programs are preserved during cytokine-driven subset interconversion of human memory CD8 T cells.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Jason P. Gigley ◽  
Rajarshi Bhadra ◽  
Imtiaz A. Khan

CD8 T cells are essential for control ofToxoplasma gondiiinfection. Once activated they undergo differentiation into short-lived effector and memory precursor effector cells. As effector cells, CD8 T cells exert immune pressure on the parasite via production of inflammatory cytokines and through their cytolytic activity. Once immune control has been established, the parasite encysts and develops into chronic infection regulated by the memory CD8 T-cell population. Several signals are needed for this process to be initiated and for development of fully differentiated memory CD8 T cells. With newly developed tools including CD8 T-cell tetramers and TCR transgenic mice, dissecting the biology behindT. gondii-specific CD8 T-cell responses can now be more effectively addressed. In this paper, we discuss what is known about the signals required for effectiveT. gondii-specific CD8 T-cell development, their differentiation, and effector function.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Yanyan Zhang ◽  
Baohua Li ◽  
Qiang Bai ◽  
Pengcheng Wang ◽  
Gang Wei ◽  
...  

AbstractThe efficient induction and long-term persistence of pathogen-specific memory CD8 T cells are pivotal to rapidly curb the reinfection. Recent studies indicated that long-noncoding RNAs expression is highly cell- and stage-specific during T cell development and differentiation, suggesting their potential roles in T cell programs. However, the key lncRNAs playing crucial roles in memory CD8 T cell establishment remain to be clarified. Through CD8 T cell subsets profiling of lncRNAs, this study found a key lncRNA-Snhg1 with the conserved naivehi-effectorlo-memoryhi expression pattern in CD8 T cells of both mice and human, that can promote memory formation while impeding effector CD8 in acute viral infection. Further, Snhg1 was found interacting with the conserved vesicle trafficking protein Vps13D to promote IL-7Rα membrane location specifically. With the deep mechanism probing, the results show Snhg1-Vps13D regulated IL-7 signaling with its dual effects in memory CD8 generation, which not just because of the sustaining role of STAT5-BCL-2 axis for memory survival, but more through the STAT3-TCF1-Blimp1 axis for transcriptional launch program of memory differentiation. Moreover, we performed further study with finding a similar high-low-high expression pattern of human SNHG1/VPS13D/IL7R/TCF7 in CD8 T cell subsets from PBMC samples of the convalescent COVID-19 patients. The central role of Snhg1-Vps13D-IL-7R-TCF1 axis in memory CD8 establishment makes it a potential target for improving the vaccination effects to control the ongoing pandemic.


2011 ◽  
Vol 208 (8) ◽  
pp. 1605-1620 ◽  
Author(s):  
Makoto Kurachi ◽  
Junko Kurachi ◽  
Fumiko Suenaga ◽  
Tatsuya Tsukui ◽  
Jun Abe ◽  
...  

Strength of inflammatory stimuli during the early expansion phase plays a crucial role in the effector versus memory cell fate decision of CD8+ T cells. But it is not known how early lymphocyte distribution after infection has an impact on this process. We demonstrate that the chemokine receptor CXCR3 is involved in promoting CD8+ T cell commitment to an effector fate rather than a memory fate by regulating T cell recruitment to an antigen/inflammation site. After systemic viral or bacterial infection, the contraction of CXCR3−/− antigen-specific CD8+ T cells is significantly attenuated, resulting in massive accumulation of fully functional memory CD8+ T cells. Early after infection, CXCR3−/− antigen-specific CD8+ T cells fail to cluster at the marginal zone in the spleen where inflammatory cytokines such as IL-12 and IFN-α are abundant, thus receiving relatively weak inflammatory stimuli. Consequently, CXCR3−/− CD8+ T cells exhibit transient expression of CD25 and preferentially differentiate into memory precursor effector cells as compared with wild-type CD8+ T cells. This series of events has important implications for development of vaccination strategies to generate increased numbers of antigen-specific memory CD8+ T cells via inhibition of CXCR3-mediated T cell migration to inflamed microenvironments.


Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4546-4554 ◽  
Author(s):  
Spencer W. Stonier ◽  
Lisa J. Ma ◽  
Eliseo F. Castillo ◽  
Kimberly S. Schluns

AbstractInterleukin-15 (IL-15) is crucial for the development of naive and memory CD8 T cells and is delivered through a mechanism called transpresentation. Previous studies showed that memory CD8 T cells require IL-15 transpresentation by an as yet unknown cell of hematopoietic origin. We hypothesized that dendritic cells (DCs) transpresent IL-15 to CD8 T cells, and we examined this by developing a transgenic model that limits IL-15 transpresentation to DCs. In this study, IL-15 transpresentation by DCs had little effect on restoring naive CD8 T cells but contributed to the development of memory-phenotype CD8 T cells. The generation of virus-specific, memory CD8 T cells was partially supported by IL-15Rα+ DCs through the preferential enhancement of a subset of KLRG-1+CD27− CD8 T cells. In contrast, these DCs were largely sufficient in driving normal homeostatic proliferation of established memory CD8 T cells, suggesting that memory CD8 T cells grow more dependent on IL-15 transpresentation by DCs. Overall, our study clearly supports a role for DCs in memory CD8 T-cell homeostasis but also provides evidence that other hematopoietic cells are involved in this function. The identification of DCs fulfilling this role will enable future studies to better focus on mechanisms regulating T-cell homeostasis.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Isaac J jensen ◽  
Xiang Li ◽  
Patrick W McGonagill ◽  
Qiang Shan ◽  
Micaela G Fosdick ◽  
...  

The global health burden due to sepsis and the associated cytokine storm is substantial. While early intervention has improved survival during the cytokine storm, those that survive can enter a state of chronic immunoparalysis defined by transient lymphopenia and functional deficits of surviving cells. Memory CD8 T cells provide rapid cytolysis and cytokine production following re-encounter with their cognate antigen to promote long-term immunity, and CD8 T cell impairment due to sepsis can pre-dispose individuals to re-infection. While the acute influence of sepsis on memory CD8 T cells has been characterized, if and to what extent pre-existing memory CD8 T cells recover remains unknown. Here, we observed that central memory CD8 T cells (TCM) from septic patients proliferate more than those from healthy individuals. Utilizing LCMV immune mice and a CLP model to induce sepsis, we demonstrated that TCM proliferation is associated with numerical recovery of pathogen-specific memory CD8 T cells following sepsis-induced lymphopenia. This increased proliferation leads to changes in composition of memory CD8 T cell compartment and altered tissue localization. Further, memory CD8 T cells from sepsis survivors have an altered transcriptional profile and chromatin accessibility indicating long-lasting T cell intrinsic changes. The sepsis-induced changes in the composition of the memory CD8 T cell pool and transcriptional landscape culminated in altered T cell function and reduced capacity to control L. monocytogenes infection. Thus, sepsis leads to long-term alterations in memory CD8 T cell phenotype, protective function and localization potentially changing host capacity to respond to re-infection.


Author(s):  
Suzanne P. M. Welten ◽  
Josua Oderbolz ◽  
Vural Yilmaz ◽  
Susanna R. Bidgood ◽  
Victoria Gould ◽  
...  

AbstractInduction of memory CD8 T cells residing in peripheral tissues is of interest for T cell-based vaccines as these cells are located at mucosal and barrier sites and can immediately exert effector functions, thus providing protection in case of local pathogen encounter. Different memory CD8 T cell subsets patrol peripheral tissues, but it is unclear which subset is superior in providing protection upon secondary infections. We used influenza virus to induce predominantly tissue resident memory T cells or cytomegalovirus to elicit a large pool of effector-like memory cells in the lungs and determined their early protective capacity and mechanism of reactivation. Both memory CD8 T cell pools have unique characteristics with respect to their phenotype, localization, and maintenance. However, these distinct features do not translate into different capacities to control a respiratory vaccinia virus challenge in an antigen-specific manner, although differential activation mechanisms are utilized. While influenza-induced memory CD8 T cells respond to antigen by local proliferation, MCMV-induced memory CD8 T cells relocate from the vasculature into the tissue in an antigen-independent and partially chemokine-driven manner. Together these results bear relevance for the development of vaccines aimed at eliciting a protective memory CD8 T cell pool at mucosal sites.


2021 ◽  
Vol 118 (16) ◽  
pp. e2013452118
Author(s):  
David M. Schauder ◽  
Jian Shen ◽  
Yao Chen ◽  
Moujtaba Y. Kasmani ◽  
Matthew R. Kudek ◽  
...  

During an acute viral infection, CD8 T cells encounter a myriad of antigenic and inflammatory signals of variable strength, which sets off individual T cells on their own differentiation trajectories. However, the developmental path for each of these cells will ultimately lead to one of only two potential outcomes after clearance of the infection—death or survival and development into memory CD8 T cells. How this cell fate decision is made remains incompletely understood. In this study, we explore the transcriptional changes during effector and memory CD8 T cell differentiation at the single-cell level. Using single-cell, transcriptome-derived gene regulatory network analysis, we identified two main groups of regulons that govern this differentiation process. These regulons function in concert with changes in the enhancer landscape to confer the establishment of the regulatory modules underlying the cell fate decision of CD8 T cells. Furthermore, we found that memory precursor effector cells maintain chromatin accessibility at enhancers for key memory-related genes and that these enhancers are highly enriched for E2A binding sites. Finally, we show that E2A directly regulates accessibility of enhancers of many memory-related genes and that its overexpression increases the frequency of memory precursor effector cells and accelerates memory cell formation while decreasing the frequency of short-lived effector cells. Overall, our results suggest that effector and memory CD8 T cell differentiation is largely regulated by two transcriptional circuits, with E2A serving as an important epigenetic regulator of the memory circuit.


Blood ◽  
2003 ◽  
Vol 102 (7) ◽  
pp. 2541-2546 ◽  
Author(s):  
Nuno L. Alves ◽  
Berend Hooibrink ◽  
Fernando A. Arosa ◽  
René A. W. van Lier

Abstract Recent studies in mice have shown that although interleukin 15 (IL-15) plays an important role in regulating homeostasis of memory CD8+ T cells, it has no apparent function in controlling homeostatic proliferation of naive T cells. We here assessed the influence of IL-15 on antigen-independent expansion and differentiation of human CD8+ T cells. Both naive and primed human T cells divided in response to IL-15. In this process, naive CD8+ T cells successively down-regulated CD45RA and CD28 but maintained CD27 expression. Concomitant with these phenotypic changes, naive cells acquired the ability to produce interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α), expressed perforin and granzyme B, and acquired cytotoxic properties. Primed CD8+ T cells, from both noncytotoxic (CD45RA-CD27+) and cytotoxic (CD45RA+CD27-) subsets, responded to IL-15 and yielded ample numbers of cytokine-secreting and cytotoxic effector cells. In summary, all human CD8+ T-cell subsets had the ability to respond to IL-15, which suggests a generic influence of this cytokine on CD8+ T-cell homeostasis in man. (Blood. 2003;102:2541-2546)


2016 ◽  
Vol 113 (29) ◽  
pp. 8278-8283 ◽  
Author(s):  
Yong Woo Jung ◽  
Hyun Gyung Kim ◽  
Curtis J. Perry ◽  
Susan M. Kaech

C-C receptor 7 (CCR7) is important to allow T cells and dendritic cells to migrate toward CCL19- and CCL21-producing cells in the T-cell zone of the spleen and lymph nodes. The role of this chemokine receptor in regulating the homeostasis of effector and memory T cells during acute viral infection is poorly defined, however. In this study, we show that CCR7 expression alters memory CD8 T-cell homeostasis following lymphocytic choriomeningitis virus infection. Greater numbers of CCR7-deficient memory T cells were formed and maintained compared with CCR7-sufficient memory T cells, especially in the lung and bone marrow. The CCR7-deficient memory T cells also displayed enhanced rates of homeostatic turnover, which may stem from increased exposure to IL-15 as a consequence of reduced exposure to IL-7, because removal of IL-15, but not of IL-7, normalized the numbers of CCR7-sufficient and CCR7-deficient memory CD8 T cells. This result suggests that IL-15 is the predominant cytokine supporting augmentation of the CCR7−/− memory CD8 T-cell pool. Taken together, these data suggest that CCR7 biases memory CD8 T cells toward IL-7–dependent niches over IL-15–dependent niches, which provides insight into the homeostatic regulation of different memory T-cell subsets.


Sign in / Sign up

Export Citation Format

Share Document