scholarly journals Influences of Land Use/ Cover Changes on Soil Properties in Rib Watershed, Ethiopia

2020 ◽  
Author(s):  
Fentanesh Haile Buruso ◽  
Zenebe Admasu Teferi

Abstract BackgroundThe decrease in the area under natural vegetation and its conversion into other types of use has resulted in resource degradation including soil quality loss. Soil properties response to changes in land use/ cover has shown spatial and temporal variations. Hence this study was carried out to examine the influence of land use/ cover changes on physical and chemical properties of the soils in Rib watershed. Soil samples were taken over three selected land use/ covers (natural forest, grazing and cultivated lands) in two agro- ecological zones (Dega and High Dega). Multivariate analysis of variance (MNOVA) and Pearson’s correlation was computed. ResultsThe study revealed that land use/ cover and altitude have influenced physical and chemical properties of the soil in the study watershed. Significant difference in distribution of soil texture, BD, OC, TN and pH among land use/ covers have been observed. Natural forest had higher OC, OC stock and TN than grazing and cultivated lands. The mean OC stock ranged from 188.32 t/ha in natural forest to 72.75t/ha in cultivated lands. Soil pH was slightly higher for natural forests and lower in the soils of grazing and cultivated lands. Significant difference (P<0.05) among the two agro ecologies were also observed in OC, Ca2+, clay, and silt.. ConclusionTherefore, land use/ cover changes have affected the concentration of TN, OC, increase soil acidity and compaction that can affect productive of soils and production of crops.

Author(s):  
Thủy Nguyễn Thị ◽  
Anh Thế Lưu

Basaltic soil is considered as the most advantageous soil unit in comparison with other units of the Central Highlands, that distributed mainly in the plateaus of Kon Plong, Kon Ha Nung, Pleiku, Buon Ma Thuot, M'Drak, Dak Nong and Di  Linh - Bao Loc. Much of the basaltic soil in the Central Highlands has been used for cultivation of long-term industrial crops. Currently, due to massive forest destruction for developing long-term industrial trees in the basaltic soil in Bao Loc - Di Linh, the natural fertility of the basaltic soil has been remarkably reduced. The physical and chemical properties of the basaltic soil under different land use types have decreased sharply compared to basaltic soil under the natural forest. The average rate of decline of total organic matter content of plantation forest land is 16%, overused forest land is 44%, tea land is 46%, coffee land is 60% compared to the same soil unit under the natural forest. The cation exchange capacity (CEC), content of total nutrients and plant available nutrients under the land use types were also decreased significantly compared to the soil unit under the natural forest. The changes of physical and chemical properties of the basaltic soil with coffee cultivation was highest in comparison with other land use types. The organic matter and potassium are two limiting factors of the nutrients in the basaltic soil of the study area, especially for tea cultivation.


2015 ◽  
Vol 2 (2) ◽  
pp. 1075-1101
Author(s):  
A. Adugna ◽  
A. Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent land uses, namely forestland, grazing land and cultivated land at 0–15 cm depth, and tested in National Soil Testing Center, Ministry of Agriculture of Ethiopia. Percentage changes of soil properties on cultivated and grazing land was computed and compared to forestland, and Analysis of variance (ANOVA) was used to test the significance of the changes. The results indicate that sand, silt, SOM, N, pH, CEC and Ca were the highest in forestlands. Mg was the highest in grazing land while clay, P and K were the highest in cultivated land. The percentage changes in sand, clay, SOM, pH, CEC, Ca and Mg were higher in cultivated land than the change in grazing land compared to forestland, except P. In terms of relationship between soil properties; SOM, N, CEC and Ca were strongly positively correlated with most of soil properties while P and silt have no significant relationship with any of other considered soil properties. Clay has negative correlation with all of soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and AP which suggest increasing degradation rate in soils of cultivated land. So as to increase SOM and other nutrients in the soil of cultivated land, integrated implementation of land management through compost, cover crops, manures, minimum tillage and crop rotation; and liming to increase soil pH are suggested.


2021 ◽  
pp. 1-10
Author(s):  
Anshu Siwach ◽  
Siddhartha Kaushal ◽  
Ratul Baishya

Abstract Mosses are one of the most important and dominant plant communities, especially in the temperate biome, and play a significant role in ecosystem function and dynamics. They influence the water, energy and element cycle due to their unique ecology and physiology. The present study was undertaken in three different temperate forest sites in the Garhwal Himalayas, viz., Triyuginarayan (Kedarnath Wildlife Sanctuary (KWLS)), Chakrata, and Kanasar forest range. The study was focused on understanding the influence of mosses on soil physical properties and nutrient availability. Different physico-chemical properties were analysed under two different substrata, that is, with and without moss cover in two different seasons, viz., monsoon and winter. We observed mosses to influence and alter the physical properties and nutrient status of soil in both seasons. All soil physical and chemical properties, except magnesium, showed significant difference within the substrates, among all the sites and across the two seasons. Besides the soil characteristics underneath the moss vegetation, the study also highlights the diversity of mosses found in the area. Mosses appear to create high nutrient microsites via a high rate of organic matter accumulation and retain nutrients for longer periods thus, maintaining ecosystem stability.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9386
Author(s):  
Yanlin Li ◽  
Chunmei Zeng ◽  
Meijun Long

The diversity and community distribution of soil bacteria in different land use types in Yangtze River Basin, Chongqing Municipality were studied by using Illumina MiSeq analysis methods. Soil physical and chemical properties were determined, and correlation analyses were performed to identify the key factors affecting bacterial numbers and α-diversity in these soils. The results showed that the soil physical and chemical properties of different land use types decrease in the order: mixed forest (M2) > pure forest (P1) > grassland (G3) > bare land (B4). There were significant differences in bacterial diversity and communities of different land use types. The diversity of different land use types showed the same sequence with the soil physical and chemical properties. The abundance and diversity of bacterial in M2 and P1 soils was significantly higher than that in G3 and B4 soils. At phylum level, G3 and B4 soils were rich in only Proteobacteria and Actinobacteria, whereas M2 and P1 soils were rich in Proteobacteria, Actinobacteria and Firmicutes. At genus level, Faecalibacterium and Agathobacter were the most abundant populations in M2 soil and were not found in other soils. Pearson correlation analysis showed that soil moisture content, pH, AN, AP, AK and soil enzyme activity were significantly related to bacterial numbers, diversity and community distribution.


Forests ◽  
2015 ◽  
Vol 6 (12) ◽  
pp. 4495-4509 ◽  
Author(s):  
Xinnian Zhou ◽  
Yuan Zhou ◽  
Chengjun Zhou ◽  
Zhilong Wu ◽  
Lifeng Zheng ◽  
...  

2019 ◽  
Vol 3 (1) ◽  
pp. 78
Author(s):  
Muhammad Irvan

Chikuwa is one of Japanese traditional fishery food product that commonly made from potato starch, fish surimi, and some spices. To enhance Chikuwa physical and chemical properties especially in texture attribute and protein content, Gelatin can be added. Gelatin is a partial hydrolysis protein that usually added in food making process to improve the gumminess quality and the protein content. Gelatin can be derived from bone collagen, skin and fish scale. The purpose of this study is to analyze the effect of gelatin from various skin fish to the physical and chemical characteristics of Chikuwa. The research method used is experimental laboratories using a completely randomized design (CRD) with 3 replications. The data analysed with ANOVA and continued with BNJ analysis if there is a significant difference between the treatments. This research has divided into two stages. The first step aim is to make the gelatin from the skin of seabass, payus fish and tilapia with 3% concentrations. The second step is Chikuwa making added with gelatin. The parameters that observed are water content, protein content, white degree, gel strength, sensory attributes, folding, bite. The results showed that Chikuwa with the addition of gelatin from seabass, payus and tilapia skin are significantly different (p &lt;0.05) due to the physical and chemical characteristics of Chikuwa. The best Chikuwa quality is Chikuwa with the addition of seabass gelatin, where the gelatin yield is 18.03 ± 0.68; the gelatin gel strength is 251.11 ± 1.08 bloom; the viscosity is 5.80 ± 0.15 cP; the gel Chikuwa sample strength is 954.54 ± 0.56 gcm and protein content is 22.01 ± 0.98%


2008 ◽  
Vol 8 (3) ◽  
pp. 496-502 ◽  
Author(s):  
Mostafa Emadi ◽  
Mehdi Emadi ◽  
Majid Bagherneja ◽  
Hamed Fathi ◽  
Mahboub Saffari

Sign in / Sign up

Export Citation Format

Share Document