scholarly journals Green Constructing an Intelligent Temperature-Regulating Fabric with Multiple Heat-Transfer Capabilities

Author(s):  
Bing Qi ◽  
Feiyu Wang ◽  
Qin Chen ◽  
Bo Xu ◽  
Ping Wang ◽  
...  

Abstract Textiles with heat management function have good effects on improving human comfort during sport. However, it is still a great challenge to endow textiles with responsiveness to external environmental changes. Herein, we developed an intelligent temperature-regulating cotton textile with multiple heat transfer capability by a two-step method. Firstly, hydroxylated boron nitride (BN-OH) nanosheet dispersion liquid was prepared using a two-step ultrasonic-alkali treatment. Subsequently, enzymatic graft polymerization of N-isopropyl acrylamide (NIPAM) onto cotton fibers were performed using horseradish peroxidase (HRP). The composite cotton fabric, containing entrapped BN-OH exhibits unique temperature-regulating ability, and the thermal diffusivities in vertical and parallel directions reach 1.2 and 1.7 times of the untreated, respectively. This can be attributed to the temperature responsiveness of poly-NIPAM (PNIPAM) and the increase in the packing density of the thermal conductive nanosheets at high temperatures. Meanwhile, the PNIPAM covering the fiber surfaces slowly expands at low temperatures, accordingly minishes the gap sizes between fabric yarns and endows the fabric with improved heat preservation effects. The present work provides a facile and green strategy for developing the intelligent textiles with ambient temperature self-response ability.

Entropy ◽  
2017 ◽  
Vol 19 (6) ◽  
pp. 256 ◽  
Author(s):  
Chao He ◽  
Youzhou Jiao ◽  
Chaochao Tian ◽  
Zhenfeng Wang ◽  
Zhiping Zhang

2021 ◽  
Vol 68 (1) ◽  
Author(s):  
R. Vidhya ◽  
T. Balakrishnan ◽  
B. Suresh Kumar

AbstractNanofluids are emerging two-phase thermal fluids that play a vital part in heat exchangers owing to its heat transfer features. Ceramic nanoparticles aluminium oxide (Al2O3) and silicon dioxide (SiO2) were produced by the sol-gel technique. Characterizations have been done through powder X-ray diffraction spectrum and scanning electron microscopy analysis. Subsequently, few volume concentrations (0.0125–0.1%) of hybrid Al2O3–SiO2 nanofluids were formulated via dispersing both ceramic nanoparticles considered at 50:50 ratio into base fluid combination of 60% distilled water (W) with 40% ethylene glycol (EG) using an ultrasonic-assisted two-step method. Thermal resistance besides heat transfer coefficient have been examined with cylindrical mesh heat pipe reveals that the rise of power input decreases the thermal resistance and inversely increases heat transfer coefficient about 5.54% and 43.16% respectively. Response surface methodology (RSM) has been employed for the investigation of heat pipe experimental data. The significant factors on the various convective heat transfer mechanisms have been identified using the analysis of variance (ANOVA) tool. Finally, the empirical models were developed to forecast the heat transfer mechanisms by regression analysis and validated with experimental data which exposed the models have the best agreement with experimental results.


Sign in / Sign up

Export Citation Format

Share Document