efficient heat transfer
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 30)

H-INDEX

18
(FIVE YEARS 1)

Thermo ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 1-13
Author(s):  
Parker Maivald ◽  
Soumya Sridar ◽  
Wei Xiong

Thermal interface material (TIM) that exists in a liquid state at the service temperature enables efficient heat transfer across two adjacent surfaces in electronic applications. In this work, the thermal conductivities of different phase regions in the Ga-In system at various compositions and temperatures are measured for the first time. A modified comparative cut bar technique is used for the measurement of the thermal conductivities of GaxIn1−x (x = 0, 0.1, 0.214, 0.3, and 0.9) alloys at 40, 60, 80, and 100 °C, the temperatures commonly encountered in consumer electronics. The thermal conductivity of liquid and semi-liquid (liquid + β) Ga-In alloys are higher than most of the TIM’s currently used in consumer electronics. These measured quantities, along with the available experimental data from literature, served as input for the thermal conductivity parameter optimization using the CALPHAD (calculation of phase diagrams) method for pure elements, solution phase, and two-phase region. A set of self-consistent parameters for the description of the thermal conductivity of the Ga-In system is obtained. There is good agreement between the measured and calculated thermal conductivities for all of the phases. Due to their ease of manufacturing and high thermal conductivity, liquid/semi-liquid Ga-In alloys have significant potential for TIM in consumer electronics.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4434
Author(s):  
Humphrey ADUN ◽  
Mustapha Mukhtar ◽  
Micheal Adedeji ◽  
Terfa Agwa ◽  
Kefas Hyelda Ibrahim ◽  
...  

The amelioration of photovoltaic (PV) and photovoltaic/thermal (PV/T) systems have garnered increased research interest lately, more so due to the discovery of the thermal property augmentation of nanofluids. The overarching goal of this study is to conduct a comparative analysis of mono, hybrid, and ternary hybrid nanofluids utilized as fluids for heat transfer applications and particularly as cooling mediums in PV/T applications. Al2O3, ZnO, Al2O3-ZnO, and Al2O3-ZnO-Fe3O4 nanofluids are synthesized at 1% volume concentration using the two-step method. The zeta potential tests carried out showed that the fluids have high stability. The numerical model developed in this study was validated using real data culled from Cyprus International University. The findings in this study showed that the Al2O3-ZnO-Fe3O4 ternary hybrid nanofluid and ZnO mono nanofluid were more efficient heat transfer fluids for the PV/T system. The optimum relative electrical PV/T efficiency against that of the PV is 8.13% while the electrical and thermal enhancement recorded in this study was 1.79% and 19.06%, respectively, measured for the ternary hybrid nanofluid based PV/T system. This present study shows that despite the limitation of pumping power and pressure drop associated with nanofluid in thermal systems, the close performance evaluation criterion values as compared with water is positive for practical utilization of nanofluid in PV/T systems.


2021 ◽  
Author(s):  
Weiliang Jin ◽  
Saijun Xiao ◽  
Qian Kou ◽  
Desheng Ding ◽  
Jun Zhang ◽  
...  

Abstract Molten inorganic salts containing solid nanoparticles with a stable and uniform dispersion have attracted great attention as efficient heat transfer and storage materials1,2 and for catalysis for chemical reactions3-5. Electrophoretic deposition in molten inorganic salts containing nanoparticles, have not been reported in the literature, compared with the related wide investigations in aqueous and organic suspensions6,7. Here we report the possibility of electrophoretic deposition of nanoparticles in high-temperature molten salts. In molten fluorides and chlorides, cell voltages of 1.2-1.5 V below the decomposition voltage of the electrolytes, were applied to perform the electrophoretic deposition of nanoparticles (e.g., TiB2 and ZrB2) on different cathode substrates, resulting in compact and adhesive coatings with high hardness. These findings should present opportunities to synthesize additional coatings and films via the proposed process.


2021 ◽  
Author(s):  
I Made Arsana ◽  
Ruri Agung Wahyuono

As shell and tube heat exchanger is widely employed in various field of industries, heat exchanger design remains a constant optimization challenge to improve its performance. The heat exchanger design includes not only the architectural geometry of either the shell and tube configuration or the additional baffles but also the working fluid. The baffle design including the baffle angle and the baffle distance has been understood as key parameter controlling the overall heat exchanger effectiveness. In addition, a room of improvement is open by substituting the conventional working fluid with the nanomaterials-enriched nanofluid. The nanomaterials, e.g. Al2O3, SiO2, TiO2, increases the thermal conductivity of the working fluids, and hence, the more efficient heat transfer process can be achieved. This chapter provide an insight on the performance improvement of shell and tube heat exchanger by modifying the baffle design and utilizing nanofluids.


2021 ◽  
Author(s):  
weiliang jin ◽  
saijun xiao ◽  
qian kou ◽  
desheng ding ◽  
jun zhang ◽  
...  

Abstract Molten inorganic salts containing solid nanoparticles with a stable and uniform dispersion have attracted great attention as efficient heat transfer and storage materials1,2 and for catalysis for chemical reactions3-5. Compared with those in aqueous suspensions6,7, electrophoretic deposition and electro-codeposition in molten inorganic salts containing nanoparticles, have not been reported in the literature. Here we report the possibility of electrophoretic deposition of nanoparticles and electro-codeposition of nanoparticles and metal ions in high-temperature molten salts. In molten fluorides and chlorides, a cell voltage of 1.2-1.5 V below the decomposition voltage of the electrolytes, was applied to perform the electrophoretic deposition of nanoparticles (e.g., TiB2 and ZrB2), resulting in compact and adhesive coatings. In molten chlorides containing TiB2 nanoparticles, with the introduction of electroactive specimen MoO3, the electro-codeposition of TiB2 nanoparticles and Mo-containing ions has been achieved to yield a dense and adhesive Mo/TiB2 nanocomposite coating with homogeneous distribution of Mo and TiB2, without the assistance of stirring of molten salts. These findings should present opportunities to synthesize various coatings and films via the proposed processes.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ahmed M. Megahed ◽  
Nourhan I. Ghoneim ◽  
M. Gnaneswara Reddy ◽  
Mostafa El-Khatib

A shooting method has been introduced for determining the numerical solution of the ordinary differential equations which describe the Newtonian magnetohydrodynamic laminar fluid flow due to an unsteady stretching sheet together with the presence of thermal radiation and variable heat flux. The variable viscosity and variable conductivity are taken into consideration. Absence of magnetic field in some studies restricts the development of the energy-efficient heat transfer mechanism as is desired in numerous applications. The present study encompasses parameters such as unsteadiness parameter, porous parameter, viscosity parameter, magnetic number, radiation parameter, and conductivity parameter. It has been consummated that the proposed model is superior to other existing models for the industrial fluid.


Author(s):  
Madderla Sandhya ◽  
D. Ramasamy ◽  
K. Sudhakar ◽  
K. Kadirgama ◽  
W.S.W. Harun

Nano coolants have been attracting various researchers for efficient heat transfer agents. The efficacy of nanofluids as nano coolants is reviewed in the present study. The addition of nanoparticles to existing coolant fluids can enhance their heat transfer performance. Conventionally water and ethylene glycol are used as engine radiator coolants. The addition of ethylene glycol is needed to increase the boiling point of the water and decrease the freezing point. The convention also seems to be a crucial factor for heat exchanger performance. This is a requirement for vehicles that are being used under harsh weather conditions. Different types of nanoparticles used as nano coolants SiO2, TiO2, Al2O3, Cu/CuO, G/GO, CNT, and Hybrid nanoparticles, were extensively illustrated. Finally, nanofluids applications in the past decade were included. As many researchers have shown, they can be used to enhance radiator performance as well. In this review paper, studies of heat transfer performance of various Nanofluids as nano coolants conducted by researchers are studied. Finally, a conclusion is presented.


Sign in / Sign up

Export Citation Format

Share Document