scholarly journals Impact of crustal deformation detection by the DSI (difference of split-band interferograms) method with PALSAR-2 data: A case study on the 2016 Kumamoto Earthquake

Author(s):  
Taku Ozawa ◽  
Yuji Himematsu

Abstract Interferometric Synthetic Aperture Radar (InSAR) is a useful tool for detecting surface deformations at high spatial resolutions. When InSAR is applied to huge surface deformations, clear fringes with complicated phase gaps often appear in the interferograms. Although the surface deformations in such areas are important for understanding their mechanisms and for investigating disasters, it is difficult to convert the data on such fringes to surface deformation information because of difficulties associated with phase unwrapping. To resolve these difficulties, we created multiple SAR pairs with different frequencies using a band-pass filter and derived the difference of interferograms which are generated from these SAR pairs. Generally, its result corresponds to the result of SAR observations made with long-wavelength radar. Therefore, a phase wrap was less likely to occur, and phase unwrapping was easy to accomplish. We applied this method to the PALSAR-2 data pairs for the 2016 Kumamoto Earthquake and succeeded in identifying huge crustal deformations with complicated phase gaps in the vicinity of surface ruptures. Comparing these results with the crustal deformations observed from GNSS measurements, the root-mean-squares of the differences were found to be approximately 4 cm. Although this accuracy was poorer than that of conventional InSAR, it was nearly equivalent to that of the offsettracking method. Furthermore, its spatial resolution was significantly better than that of the offset-tracking method. However, the disadvantage of this method is that its detection accuracy is significantly degraded in zones with low coherence, due to noise amplification. The standard deviation of the noise component was approximately 2 cm for pixels with coherences above 0.7. However, for pixels with a coherence lower than 0.2, the standard deviation was greater than 10 cm, and the noise component occasionally exceeded 1 m. Despite the disadvantages of this method, it is effective for the detection of huge crustal deformations with high spatial resolution in areas where phase unwrapping methods for conventional InSAR are inappropriate.

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Yasuhira Aoyagi ◽  
Haruo Kimura ◽  
Kazuo Mizoguchi

Abstract The earthquake rupture termination mechanism and size of the ruptured area are crucial parameters for earthquake magnitude estimations and seismic hazard assessments. The 2016 Mw 7.0 Kumamoto Earthquake, central Kyushu, Japan, ruptured a 34-km-long area along previously recognized active faults, eastern part of the Futagawa fault zone and northernmost part of the Hinagu fault zone. Many researchers have suggested that a magma chamber under Aso Volcano terminated the eastward rupture. However, the termination mechanism of the southward rupture has remained unclear. Here, we conduct a local seismic tomographic inversion using a dense temporary seismic network to detail the seismic velocity structure around the southern termination of the rupture. The compressional-wave velocity (Vp) results and compressional- to shear-wave velocity (Vp/Vs) structure indicate several E–W- and ENE–WSW-trending zonal anomalies in the upper to middle crust. These zonal anomalies may reflect regional geological structures that follow the same trends as the Oita–Kumamoto Tectonic Line and Usuki–Yatsushiro Tectonic Line. While the 2016 Kumamoto Earthquake rupture mainly propagated through a low-Vp/Vs area (1.62–1.74) along the Hinagu fault zone, the southern termination of the earthquake at the focal depth of the mainshock is adjacent to a 3-km-diameter high-Vp/Vs body. There is a rapid 5-km step in the depth of the seismogenic layer across the E–W-trending velocity boundary between the low- and high-Vp/Vs areas that corresponds well with the Rokkoku Tectonic Line; this geological boundary is the likely cause of the dislocation of the seismogenic layer because it is intruded by serpentinite veins. A possible factor in the southern rupture termination of the 2016 Kumamoto Earthquake is the existence of a high-Vp/Vs body in the direction of southern rupture propagation. The provided details of this inhomogeneous barrier, which are inferred from the seismic velocity structures, may improve future seismic hazard assessments for a complex fault system composed of multiple segments.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kodai Nakagomi ◽  
Toshiko Terakawa ◽  
Satoshi Matsumoto ◽  
Shinichiro Horikawa

An amendment to this paper has been published and can be accessed via the original article.


Sign in / Sign up

Export Citation Format

Share Document