scholarly journals RGD4C Peptide Mediates anti-p21Ras scFv Entry Into Tumor Cells and Produces an Inhibitory Effect on the Human Colon Cancer Cell Line SW480

2020 ◽  
Author(s):  
Chenchen Huang ◽  
Fangrui Liu ◽  
Qiang Feng ◽  
Xinyan Pan ◽  
Shuling Song ◽  
...  

Abstract BackgroundAn anti-p21Ras scFv can specifically bind with mutant and wild-type p21Ras but cannot penetrate the cell membrane, which prevents it from binding to p21Ras in the cytoplasm. Here, the RGD4C peptide was used to mediate scFv penetration into tumor cells and produce an inhibitory effect.MethodsRGD4C-linker-EGFP and RGD4C-p21Ras-scFv recombinant expression plasmids were constructed, and the fusion proteins were expressed in E. coli and purified with HisPur Ni-NTA. RGD4C-linker-EFGP was used to test the factors affecting RGD4C penetration of the tumor cell membrane. The immunoreactivity of RGD4C-p21Ras-scFv toward p21Ras was identified by ELISA and western blotting. Moreover, immunocytochemistry was used to detect the ability of RGD4C-p21Ras-scFv to penetrate SW480 cells. Cell migration, colony formation, cell killing, and apoptosis assays were used to assess the inhibitory effect of RGD4C-p21Ras-scFv on SW480 cells in vitro.ResultsThe RGD4C peptide could target tumor cells, but endocytosis inhibitors and a low temperature inhibited RGD4C peptide endocytosis into cells, and tumor cell entry was time and concentration dependent. Additionally, a change in the cell membrane potential did not affect penetrability. We found that RGD4C-p21Ras-scFv could penetrate SW480 cells; effectively inhibit the growth, proliferation and migration of SW480 cells; and promote apoptosis in SW480 cells. ConclusionThe RGD4C peptide can mediate anti-p21Ras scFv entry into SW480 cells and produce an inhibitory effect, which indicates that RGD4C-p21Ras-scFv may be a potential therapeutic antibody for the treatment of RAS-mutant colorectal cancer.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen-Chen Huang ◽  
Fang-Rui Liu ◽  
Qiang Feng ◽  
Xin-Yan Pan ◽  
Shu-Ling Song ◽  
...  

Abstract Background We prepared an anti-p21Ras scFv which could specifically bind with mutant and wild-type p21Ras. However, it cannot penetrate the cell membrane, which prevents it from binding to p21Ras in the cytoplasm. Here, the RGD4C peptide was used to mediate the scFv penetration into tumor cells and produce antitumor effects. Methods RGD4C-EGFP and RGD4C-p21Ras-scFv recombinant expression plasmids were constructed to express fusion proteins in E. coli, then the fusion proteins were purified with HisPur Ni-NTA. RGD4C-EGFP was used as reporter to test the factors affecting RGD4C penetration into tumor cell. The immunoreactivity of RGD4C-p21Ras-scFv toward p21Ras was identified by ELISA and western blotting. The ability of RGD4C-p21Ras-scFv to penetrate SW480 cells and colocalization with Ras protein was detected by immunocytochemistry and immunofluorescence. The antitumor activity of the RGD4C-p21Ras-scFv was assessed with the MTT, TUNEL, colony formation and cell migration assays. Chloroquine (CQ) was used an endosomal escape enhancing agent to enhance endosomal escape of RGD4C-scFv. Results RGD4C-p21Ras-scFv fusion protein were successfully expressed and purified. We found that the RGD4C fusion protein could penetrate into tumor cells, but the tumor cell entry of was time and concentration dependent. Endocytosis inhibitors and a low temperature inhibited RGD4C fusion protein endocytosis into cells. The change of the cell membrane potential did not affect penetrability. RGD4C-p21Ras-scFv could penetrate SW480 cells, effectively inhibit the growth, proliferation and migration of SW480 cells and promote this cells apoptosis. In addition, chloroquine (CQ) could increase endosomal escape and improve antitumor activity of RGD4C-scFv in SW480 cells. Conclusion The RGD4C peptide can mediate anti-p21Ras scFv entry into SW480 cells and produce an inhibitory effect, which indicates that RGD4C-p21Ras-scFv may be a potential therapeutic antibody for the treatment of ras-driven cancers.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chen-Chen Huang ◽  
Fang-Rui Liu ◽  
Qiang Feng ◽  
Xin-Yan Pan ◽  
Shu-Ling Song ◽  
...  

An amendment to this paper has been published and can be accessed via the original article.


Author(s):  
Yuan Feng ◽  
Xinran Liu ◽  
Yueqing Han ◽  
Mantian Chen ◽  
Lin Zhang ◽  
...  

Background & Objective: Nowadays, the interaction between natural products and microRNAs provides a promising field for exploring the chemo preventive agents for various cancers.As a member of microRNAs, the expression of let-7f-5p is universally down regulated in colorectal cancer (CRC). The present study aimed to uncover the function of let-7f-5p in the proliferation of human colon cancer cell line Caco2 and explored chemo preventive agents from natural resources that can prevent the development of CRC. Methods: Herein, Caco2 cells were transfected with let-7f-5p mimic and inhibitor to manipulate let-7f-5p levels, and the expression of let-7f-5p wasper formed by RT‑qPCR. Next, we determined how let-7f-5p regulates Caco2 cell proliferation by using MTT, wound-healing, cell cycle,and colony formation assays.Besides, to further understand the effect of let-7f-5p, we evaluated the protein level of AMER3 and SLC9A9 by using western blotting assays. Results: The results showed a suppressive function of let-7f-5p on Caco2 cell proliferation and then put forward a triterpenoid (rotundic acid, RA) which significant antagonized the effect of cell proliferation, restitution after wounding,and colony formation caused by let-7f-5p. Moreover, the western blot results further indicated that the inhibitory effect of RA might be due to its suppressive role in let-7f-5p-targeted AMER3 and SLC9A9 regulation. Conclusion: Our validation study results confirmed that let-7f-5p was a potent tumor suppressor gene of Caco2 cell proliferation,and RA showed as a regulator of the effect oflet-7f-5p on cell proliferation and then could be a potential chemo preventive agent for CRC treatment.


2011 ◽  
Vol 34 (1) ◽  
pp. 45 ◽  
Author(s):  
Yan Du ◽  
Yiwen Liu ◽  
Yingzhi Wang ◽  
Yiqing He ◽  
Cuixia Yang ◽  
...  

Purpose: Lymphatic vessel endothelial hyaluronan receptor (LYVE-1), a specific molecular marker for lymph systems, has only one known ligand, hyaluronan (HA). Many studies have reported that HA, on the surface of tumor cells, is associated with the metastatic behavior of cancer cells. The interaction of LYVE-1 with HA may facilitate tumor cell attachment and enhance dissemination of tumor cells to lymph nodes. The aim of this study was to explore the biological function of LYVE-1 and to determine whether the interaction between LYVE-1 and HA was directly involved in the adhesion of tumor cells to lymphatic vessels. Methods: COS-7 cells were transfected with cDNA encoding LYVE-1 and expressed LYVE-1 assembled exogenously added HA. A high HA-expressing breast cancer cell line, HS-578T, was chosen to be the upper layer of cells that adhered to a lower layer of COS-7LYVE-1(+), COS-7pegfp-N1, or COS-7 cells for the adhesion analyses. The mechanism of adhesion was investigated by an experiment in which the HA on the surface of HS-578T cells was digested by Streptomyces hyaluronidase before the HS-578T cells were allowed to adhere to COS-7LYVE-1(+) cells. Results: Results showed that more adhesion was observed between HS-578T and COS-7LYVE-1(+) cells, while less adhesion was observed between HS-578T cells and either COS-7pegfp-N1 or COS-7 cells (p < 0.01). Decreased HA on the HS-578T cell surface could reduce the adhesion of HA-578T cells to COS-7LYVE-1(+) cells.suggesting that this adhesion might be mediated through HA. Conclusion: Our results suggest that LYVE-1 allows the adhesion of tumor cells through the interaction of HA on the tumor cell membrane with LYVE-1.


2022 ◽  
Vol 65 (1) ◽  
Author(s):  
Chenghu Wu ◽  
Ailin Yu ◽  
Yue Chen ◽  
Mingbo Fan

AbstractCell membrane vesicles, as delivery carriers of drugs or biological agents in vivo, are an important therapeutic mode in the study of disease treatment. Tumor membrane-derived vesicles have been widely used in tumor therapy because of their good tumor enrichment effect. The most common method is the surface of nanoparticles coated with tumor cell membrane, which can effectively prolong the circulation time of particles in the blood and the enrichment of tumors. In this study, we prepared vesicles of different tumor cell membrane derivate and studied their targeting to tumors detailly. The results showed that homologous vesicles have high targeting to homologous tumor cells. The fluorescence of vesicles in homologous tumor cells was significantly higher than that in other tumor cells. This study will provide a new strategy and guidance for the clinical treatment of cancer based on the tumor cell membrane system. Graphical Abstract


Author(s):  
Kailas D. Datkhile ◽  
Satish R. Patil ◽  
Pratik P. Durgawale ◽  
Madhavi N. Patil ◽  
Dilip D. Hinge ◽  
...  

Abstract Background Nanomedicine has evolved as precision medicine in novel therapeutic approach of cancer management. The present study investigated the efficacy of biogenic gold nanoparticles synthesized using Argemone mexicana L. aqueous extract (AM-AuNPs) against the human colon cancer cell line, HCT-15. Results Biosynthesis of AM-AuNPs was determined by ultraviolet-visible spectroscopy and further characterized by transmission electron microscopy, X-ray diffraction, and Fourier transition infrared spectroscopy analysis. The cytotoxic activity of AM-AuNPs was assessed by the 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assay, whereas genotoxicity was evaluated by the DNA fragmentation assay. The expression of apoptosis regulatory genes such as p53 and caspase-3 was explored through semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and western blotting to evidence apoptotic cell death in HCT-15 cells. Biogenic AM-AuNPs inhibited cell proliferation in HCT-15 cell line with a half maximal inhibitory concentration (IC50) of 20.53 μg/mL at 24 h and 12.03 μg/mL at 48 h of exposure. The altered cell morphology and increased apoptosis due to AM-AuNPs were also evidenced through nuclear DNA fragmentation and upregulated expression of p53 and caspase-3 in HCT-15 cells. Conclusion The AM-AuNPs may exert antiproliferative and genotoxic effects on HCT-15 cells by cell growth suppression and induction of apoptosis mediated by activation of p53 and caspase-3 genes.


Sign in / Sign up

Export Citation Format

Share Document