tumor cell membrane
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 33)

H-INDEX

18
(FIVE YEARS 3)

2022 ◽  
Vol 65 (1) ◽  
Author(s):  
Chenghu Wu ◽  
Ailin Yu ◽  
Yue Chen ◽  
Mingbo Fan

AbstractCell membrane vesicles, as delivery carriers of drugs or biological agents in vivo, are an important therapeutic mode in the study of disease treatment. Tumor membrane-derived vesicles have been widely used in tumor therapy because of their good tumor enrichment effect. The most common method is the surface of nanoparticles coated with tumor cell membrane, which can effectively prolong the circulation time of particles in the blood and the enrichment of tumors. In this study, we prepared vesicles of different tumor cell membrane derivate and studied their targeting to tumors detailly. The results showed that homologous vesicles have high targeting to homologous tumor cells. The fluorescence of vesicles in homologous tumor cells was significantly higher than that in other tumor cells. This study will provide a new strategy and guidance for the clinical treatment of cancer based on the tumor cell membrane system. Graphical Abstract


2021 ◽  
Author(s):  
Matthew Smith ◽  
Daniel Sievenpiper

<p>· We propose multi-loci and multi-site current patterning (sequential or simultaneous) for precise, rapid and repeatable steering for improved neuronal targeting.</p><p>· Here we demonstrate these improvements by using a unique pixel cell for excitation synthesis as enabled by a three-layer dense magnetic coil array that is mapped to a hexagonal grid with cubic coordinates.</p><p>· We validate the theory with supporting simulations, experimental results and a scalable electronics design that can address a relevant range of larger coil diameters, higher power levels and topologies.</p><p><a></a></p><p>· Precise, rapid and repeatable patterns potentially offer new modalities for noninvasive neuromodulation (suprathreshold and subthreshold) and adjacent biomagnetic applications such as tumor cell membrane disruption [1], and magnetic drug delivery [2].</p>


2021 ◽  
Author(s):  
Matthew Smith ◽  
Daniel Sievenpiper

<p>· We propose multi-loci and multi-site current patterning (sequential or simultaneous) for precise, rapid and repeatable steering for improved neuronal targeting.</p><p>· Here we demonstrate these improvements by using a unique pixel cell for excitation synthesis as enabled by a three-layer dense magnetic coil array that is mapped to a hexagonal grid with cubic coordinates.</p><p>· We validate the theory with supporting simulations, experimental results and a scalable electronics design that can address a relevant range of larger coil diameters, higher power levels and topologies.</p><p><a></a></p><p>· Precise, rapid and repeatable patterns potentially offer new modalities for noninvasive neuromodulation (suprathreshold and subthreshold) and adjacent biomagnetic applications such as tumor cell membrane disruption [1], and magnetic drug delivery [2].</p>


2021 ◽  
Vol 17 (11) ◽  
pp. 2099-2113
Author(s):  
Jiaxuan Zhao ◽  
Guangsheng Du ◽  
Xun Sun

As an important means of tumor immunotherapy, tumor vaccines have achieved exciting results in the past few decades. However, there are still many obstacles that hinder tumor vaccines from achieving maximum efficacy, including lack of tumor antigens, low antigen immunogenicity and poor delivery efficiency. To overcome these challenges, researchers have developed and investigated various new types of tumor antigens with higher antigenic specificity and broader antigen spectrum, such as tumor-specific peptide antigens, tumor lysates, tumor cell membrane, tumor associated exosomes, etc. At the same time, different nanoparticulate delivery platforms have been developed to increase the immunogenicity of the tumor antigens, for example by increasing their targeting efficiency of antigen-presenting cells and lymph nodes, and by co-delivering antigens with adjuvants. In this review, we summarized different types of the tumor antigens that have been reported, and introduced several nanovaccine strategies for increasing the immunogenicity of tumor antigens. The review of recent progress in these fields may provide reference for the follow-up studies of tumor antigen-based cancer immunotherapy.


Author(s):  
Yiling Yang ◽  
Shaohua Hua ◽  
Weilong Suo ◽  
Wenbin Wang ◽  
Longhao Wang ◽  
...  

Ultrasound (US)-triggered sonodynamic therapy (SDT) proves itself to be a formidable tool in the fight against cancer, due to its large spectrum of uses as a non-invasive therapeutic measure, while also demonstrating itself to be a certain improvement upon traditional SDT therapeutics. However, tumor hypoxia remains to be a major challenge for oxygen-dependent SDT. This study describes the development of an innovative, multi-use, catalyst-based and improved SDT targeting cancer, through the employment of a sonosensitizing curcumin (Cur) load embedded within a MnO2 core, together with an extraneous tumor cell membrane component. The latter allows for efficient tumor recognition properties. Hollowed-out MnO2 allows for efficient drug delivery, together with catalyzing oxygen generation from hydrogen peroxide present in tumor tissue, leading to enhanced SDT efficacy through the induction of a reduced hypoxic state within the tumor. In addition, Cur acts as a cytotoxic agent in its own right. The results deriving from in vivo studies revealed that such a biomimetic approach for drug-delivery actually led to a reduced hypoxic state within tumor tissue and a raised tumor-inhibitory effect within mouse models. Such a therapeutic measure attained a synergic SDT-based tumor sensitization treatment option, together with the potential use of such catalysis-based therapeutic formulations in other medical conditions having hypoxic states.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Payal Dhar ◽  
Fahmin Basher ◽  
Zhe Ji ◽  
Lei Huang ◽  
Si Qin ◽  
...  

AbstractNatural Killer (NK) cell dysfunction is associated with poorer clinical outcome in cancer patients. What regulates NK cell dysfunction in tumor microenvironment is not well understood. Here, we demonstrate that the human tumor-derived NKG2D ligand soluble MIC (sMIC) reprograms NK cell to secrete pro-tumorigenic cytokines with diminished cytotoxicity and polyfunctional potential. Antibody clearing sMIC restores NK cell to a normal cytotoxic effector functional state. We discovered that sMIC selectively activates the CBM-signalosome inflammatory pathways in NK cells. Conversely, tumor cell membrane-bound MIC (mMIC) stimulates NK cell cytotoxicity through activating PLC2γ2/SLP-76/Vav1 pathway. Ultimately, antibody targeting sMIC effectuated the in vivo anti-tumor effect of adoptively transferred NK cells. Our findings uncover an unrecognized mechanism that could instruct NK cell to a dysfunctional state in response to cues in the tumor microenvironment. Our findings provide a rationale for co-targeting sMIC to enhance the efficacy of the ongoing NK cell-based cancer immunotherapy.


2021 ◽  
Author(s):  
Lingling Wu ◽  
Qin Li ◽  
Junjie Deng ◽  
Weide Xu ◽  
Bingyu Chen ◽  
...  

Abstract Cell membrane-camouflaged nanoparticles are drawing increasing attention because their surfaces retain the natural functionalities of the cell plasma membranes, making them a unique class of biomimetic materials combining natural and synthetic components. Modifying the cell membranes or combining the functions of different types of membranes enhances their functionality. Herein, we prepared platelet and tumor cell membrane camouflaged antitumor nanoparticles. The effects of β-mangostin-loaded nanoparticles on the target and its anticancer action in glioma were measured in vitro and in vivo. Multifunctional nanoparticles were manufactured with platelet–C6 hybrid biomimetic coating (PCM), lactic-co-glycolic acid (PLGA), and β-mangostin. PCM increased the proportion of active drug targeting in C6 and immune escape characteristics in THP-1 cells, thus enhancing the cytotoxicity of β-PCNPs. The β-PCNPs were comprehensively characterized to study the inherent properties of both source cells. Compared with bare β-NPs, β-PCNPs exhibited high tumor-targeting ability and induced apoptosis of C6 cells in vitro. Mice experiments with intravenous administration of the drug revealed that the β-PCNP platform enhanced the tumor targeting capability and exhibited excellent chemotherapy with high inhibition rate of glioma tumor growth in vivo. The mice in the β-PCNP group had a markedly prolonged circulation lifetime and exhibited better outcome than those in the β-NP group. These results provide a new strategy of utilizing PCNPs as carriers for drug delivery, which improves the targeting efficiency and therapeutic efficacy of chemotherapeutic agents for glioma therapy.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 479
Author(s):  
Souvik Mukerjee ◽  
Abdulaziz S. Saeedan ◽  
Mohd. Nazam Ansari ◽  
Manjari Singh

Particular dramatic macromolecule proteins are responsible for various cellular events in our body system. Lipids have recently recognized a lot more attention of scientists for understanding the relationship between lipid and cellular function and human health However, a biological membrane is formed with a lipid bilayer, which is called a P–L–P design. Our body system is balanced through various communicative signaling pathways derived from biological membrane proteins and lipids. In the case of any fatal disease such as cancer, the biological membrane compositions are altered. To repair the biological membrane composition and prevent cancer, dietary fatty acids, such as omega-3 polyunsaturated fatty acids, are essential in human health but are not directly synthesized in our body system. In this review, we will discuss the alteration of the biological membrane composition in breast cancer. We will highlight the role of dietary fatty acids in altering cellular composition in the P–L–P bilayer. We will also address the importance of omega-3 polyunsaturated fatty acids to regulate the membrane fluidity of cancer cells.


Author(s):  
Rajib Hossain ◽  
Rasel Ahmed Khan ◽  
Muhammad Torequl Islam ◽  
Divya Jain ◽  
Pracheta Janmeda ◽  
...  

Nanoparticles (1-100 nanometres in size), products of nanotechnology, offer a modern way to transport anti-cancer drugs by acting as transporters of drugs into tumor cells, hence quenching tumor cell proliferation. Such nanoparticles may be formulated to bind to the tumor cell membrane or inhibit specific reactions of tumor biosynthetic pathway by gene repression, or directly bind to the active sites of essential enzymes in the biosynthetic pathway. Consequently, drugs are completely delivered to the desired cancerous cells without system interference. Liposomal doxorubicin and albumin-bound paclitaxel are two examples of nanotechnologically developed drugs for treating cancer. Modern knowledge of nanotechnology opens up new opportunities for innovative research on cancer therapies and administration and helps minimize harm to healthy cells. This review focuses on the doses and routes of administration of these chemotherapeutic agents used in treating cancers.


Sign in / Sign up

Export Citation Format

Share Document