A High-precision Forest Fire Smoke Detection Approach Based on DRGNet to Remote Sensing Through Uavs

Author(s):  
Jialei Zhan ◽  
Yaowen Hu ◽  
Guoxiong Zhou ◽  
Yanfeng Wang ◽  
Weiwei Cai ◽  
...  

Abstract The occurrence of forest fires can lead to ecological damage, property loss, and human casualties. Current forest fire smoke detection methods do not sufficiently consider the characteristics of smoke with high transparency and no clear edges and have low detection accuracy, which cannot meet the needs of complex aerial forest fire smoke detection tasks. In this paper, we propose Dual-ResNet50-vd with SoftPool based on a recursive feature pyramid with deconvolution and dilated convolution and global optimal nonmaximum suppression (DRGNet) for high-accuracy detection of forest fire smoke. First, the Dual-ResNet50-vd module is proposed to enhance the extraction of smoke features with high transparency and no clear edges, and SoftPool is used to retain more feature information of smoke. Then, a recursive feature pyramid with deconvolution and dilated convolution (RDDFPN) is proposed to fuse shallow visual features and deep semantic information in the channel dimension to improve the accuracy of long-range aerial smoke detection. Finally, global optimal nonmaximum suppression (GO-NMS) sets the objective function to globally optimize the selection of anchor frames to adapt to the aerial photography of multiple smoke locations in forest fire scenes. The experimental results show that the DRGNet parametric number on the UAV-IoT platform is as low as 53.48 M, mAP reaches 79.03%, mAP50 reaches 90.26%, mAP75 reaches 82.35%, FPS reaches 122.5, and GFLOPs reaches 55.78. Compared with other mainstream methods, it has the advantages of real-time detection and high accuracy.

Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


Author(s):  
Liqiong Chen ◽  
Lian Zou ◽  
Cien Fan ◽  
Yifeng Liu

Automatic aircraft engine defect detection is a challenging but important task in industry which can ensure safe air transportation and flight. In this paper, we propose a fast and accurate feature weighting network (FWNet) to solve the problem of defect scale variation and improve detection accuracy. The framework is designed based on recent popular convolutional neural networks and feature pyramid. To further boost the representation power of the network, a new feature weighting module (FWM) was proposed to recalibrate the channel-wise attention and increase the weights of valid features. The model was trained and tested on a self-built dataset, which consisted of 1916 images and contained three defect types: ablation, crack and coating missing. Extensive experimental results verify the effectiveness of the proposed FWM and show that the proposed method can accurately detect engine defects of different scales and different locations. Our method obtains 89.4% mAP and can run at 6FPS, which surpasses other state-of-the-art detection methods and can quickly provide diagnostic basis for aircraft maintenance inspectors in practical applications.


2015 ◽  
Vol 7 (4) ◽  
pp. 4473-4498 ◽  
Author(s):  
Xiaolian Li ◽  
Weiguo Song ◽  
Liping Lian ◽  
Xiaoge Wei

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Chao-Ching Ho

Currently, video surveillance-based early fire smoke detection is crucial to the prevention of large fires and the protection of life and goods. To overcome the nighttime limitations of video smoke detection methods, a laser light can be projected into the monitored field of view, and the returning projected light section image can be analyzed to detect fire and/or smoke. If smoke appears within the monitoring zone created from the diffusion or scattering of light in the projected path, the camera sensor receives a corresponding signal. The successive processing steps of the proposed real-time algorithm use the spectral, diffusing, and scattering characteristics of the smoke-filled regions in the image sequences to register the position of possible smoke in a video. Characterization of smoke is carried out by a nonlinear classification method using a support vector machine, and this is applied to identify the potential fire/smoke location. Experimental results in a variety of nighttime conditions demonstrate that the proposed fire/smoke detection method can successfully and reliably detect fires by identifying the location of smoke.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Xi Cheng

Most of the existing smoke detection methods are based on manual operation, which is difficult to meet the needs of fire monitoring. To further improve the accuracy of smoke detection, an automatic feature extraction and classification method based on fast regional convolution neural network (fast R–CNN) was introduced in the study. This method uses a selective search algorithm to obtain the candidate images of the sample images. The preselected area coordinates and the sample image of visual task are used as network learning. During the training process, we use the feature migration method to avoid the lack of smoke data or limited data sources. Finally, a target detection model is obtained, which is strongly related to a specified visual task, and it has well-trained weight parameters. Experimental results show that this method not only improves the detection accuracy but also effectively reduces the false alarm rate. It can not only meet the real time and accuracy of fire detection but also realize effective fire detection. Compared with similar fire detection algorithms, the improved algorithm proposed in this paper has better robustness to fire detection and has better performance in accuracy and speed.


2021 ◽  
Author(s):  
Zhenyu Wang ◽  
Senrong Ji ◽  
Duokun Yin

Abstract Recently, using image sensing devices to analyze air quality has attracted much attention of researchers. To keep real-time factory smoke under universal social supervision, this paper proposes a mobile-platform-running efficient smoke detection algorithm based on image analysis techniques. Since most smoke images in real scenes have challenging variances, it’s difficult for existing object detection methods. To this end, we introduce the two-stage smoke detection (TSSD) algorithm based on the lightweight framework, in which the prior knowledge and contextual information are modeled into the relation-guided module to reduce the smoke search space, which can therefore significantly improve the shortcomings of the single-stage method. Experimental results show that the TSSD algorithm can robustly improve the detection accuracy of the single-stage method and has good compatibility for different image resolution inputs. Compared with various state-of-the-art detection methods, the accuracy AP mean of the TSSD model reaches 59.24%, even surpassing the current detection model Faster R-CNN. In addition, the detection speed of our proposed model can reach 50 ms (20 FPS), which meets the real-time requirements, and can be deployed in the mobile terminal carrier. This model can be widely used in some scenes with smoke detection requirements, providing great potential for practical environmental applications.


2019 ◽  
Vol 11 (5) ◽  
pp. 531 ◽  
Author(s):  
Yuanyuan Wang ◽  
Chao Wang ◽  
Hong Zhang ◽  
Yingbo Dong ◽  
Sisi Wei

Independent of daylight and weather conditions, synthetic aperture radar (SAR) imagery is widely applied to detect ships in marine surveillance. The shapes of ships are multi-scale in SAR imagery due to multi-resolution imaging modes and their various shapes. Conventional ship detection methods are highly dependent on the statistical models of sea clutter or the extracted features, and their robustness need to be strengthened. Being an automatic learning representation, the RetinaNet object detector, one kind of deep learning model, is proposed to crack this obstacle. Firstly, feature pyramid networks (FPN) are used to extract multi-scale features for both ship classification and location. Then, focal loss is used to address the class imbalance and to increase the importance of the hard examples during training. There are 86 scenes of Chinese Gaofen-3 Imagery at four resolutions, i.e., 3 m, 5 m, 8 m, and 10 m, used to evaluate our approach. Two Gaofen-3 images and one Constellation of Small Satellite for Mediterranean basin Observation (Cosmo-SkyMed) image are used to evaluate the robustness. The experimental results reveal that (1) RetinaNet not only can efficiently detect multi-scale ships but also has a high detection accuracy; (2) compared with other object detectors, RetinaNet achieves more than a 96% mean average precision (mAP). These results demonstrate the effectiveness of our proposed method.


2021 ◽  
Vol 14 (1) ◽  
pp. 45
Author(s):  
Zewei Wang ◽  
Pengfei Yang ◽  
Haotian Liang ◽  
Change Zheng ◽  
Jiyan Yin ◽  
...  

Forest fire is a ubiquitous disaster which has a long-term impact on the local climate as well as the ecological balance and fire products based on remote sensing satellite data have developed rapidly. However, the early forest fire smoke in remote sensing images is small in area and easily confused by clouds and fog, which makes it difficult to be identified. Too many redundant frequency bands and remote sensing index for remote sensing satellite data will have an interference on wildfire smoke detection, resulting in a decline in detection accuracy and detection efficiency for wildfire smoke. To solve these problems, this study analyzed the sensitivity of remote sensing satellite data and remote sensing index used for wildfire detection. First, a high-resolution remote sensing multispectral image dataset of forest fire smoke, containing different years, seasons, regions and land cover, was established. Then Smoke-Unet, a smoke segmentation network model based on an improved Unet combined with the attention mechanism and residual block, was proposed. Furthermore, in order to reduce data redundancy and improve the recognition accuracy of the algorithm, the conclusion was made by experiments that the RGB, SWIR2 and AOD bands are sensitive to smoke recognition in Landsat-8 images. The experimental results show that the smoke pixel accuracy rate using the proposed Smoke-Unet is 3.1% higher than that of Unet, which could effectively segment the smoke pixels in remote sensing images. This proposed method under the RGB, SWIR2 and AOD bands can help to segment smoke by using high-sensitivity band and remote sensing index and makes an early alarm of forest fire smoke.


Sign in / Sign up

Export Citation Format

Share Document