Evaluation of Microwave-Assisted Organic Acid Separation of Organic Sulfur from High Sulfur Coal

Author(s):  
Chaoshun Jiang ◽  
Jin Liu ◽  
Shen Hao ◽  
Zheng Pang ◽  
Zhi Wang ◽  
...  

Abstract To explore the feasibility of organic acid removal of organic sulfur from high sulfur coal, three organic acids, oxalic acid, citric acid and ascorbic acid, were selected as desulfurization reagents. Combined with microwave irradiation technology, desulfurization experiments of high-sulfur coal treated with nitric acid were conducted. The orthogonal experimental results showed that microwave synergistic citric acid desulfurization had a better desulfurization effect. The removal rate of organic sulfur was 55.47% when the operation conditions of the reaction were 1 mol/L, 90 ℃ and 1000 W for 7 min. The desulfurization efficiency of oxalic acid and ascorbic acid was not good, and the removal efficiencies of organic sulfur were 32.35% and 21.37%, respectively. Fourier transform infrared spectroscopy showed that sulfones and sulfoxides were partially reduced and that the removal effect of thiophene was poor. X-ray photoelectron spectroscopy showed that the mercapto group in the mercaptan combined with hydrogen ions and escaped in the form of H2S. The content of aromatic thioether and aromatic thiol in the coal treated with microwave irradiation was only 0.1%. Research indicates that microwave-assisted organic acid removal of organic sulfur is feasible, and researchers can explore more efficient organic acids as desulfurization reagents based on this study.

2011 ◽  
Vol 393-395 ◽  
pp. 709-712 ◽  
Author(s):  
Fu Xing Cui ◽  
Jin Feng Song ◽  
Ya Fen Guo ◽  
Jin Zhong Xu

The effects and mechanism of different concentration organic acids and organic salts solution on Al availability of dark brown forest soil were studied. It was resulted that, oxalic acid/oxalate and citric acid/citrate substantially stimulated soil Al release of dark brown forest soil. The effect of organic acids/salts on Al release would be strengthen with increasing of their concentrations.The contents of Al released from A1 horizon was higher than that from B horizon. Organic salt solutions had much higher effects than organic acid the same in concentration, i.e. citrate>citric acid, oxalate>oxalic acid. Therefore, the mechanism of organic acid/salts triggering release of soil Al was assumed to be dominated by complexation reactions of organic anions. Citric acid/ citrate had much higher effect than oxalic acid/ oxalate at same concentration to A1 and B horizons, i.e. citrate> oxalate, citric acid>oxalic acid, which was primarily related with the greater complexing capacities and dissociation constants of citric acid.


2017 ◽  
pp. 25-33 ◽  
Author(s):  
Elizabeth Quevedo ◽  
Erlinda Dizon ◽  
Florinia Merca

“Batuan” fruit (Garcinia binucao [Blco.] Choisy), an indigenous acidulant grown in the Visayas State University, Baybay City, Leyte was analyzed for its organic acid profile at different stages of maturity for the development of potential food and non-food products. The analysis of organic acid content was done using Reverse Phase-High Performance Liquid Chromatography. Organic acids in the dried, powdered “batuan” fruit samples were extracted with the mobile phase (50mM KH2PO4/ H3PO4, pH2.8). The sample extracts and organic acid standards (oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, lactic acid, acetic acid, and succinic acid) were injected to RP-HPLC under isocratic elution with the mobile phase at a flow rate of 1.0mL min-1 and using UV-vis detection at 210nm. “Batuan” fruit samples contain oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, succinic acid, acetic acid, lactic acid, and a few unidentified organic acids. Among the organic acids present, citric acid accumulated the highest in the ripe “batuan” fruit; fumaric acid, the least. Results of this study show that “batuan” fruit could be a good natural source of acidulant for food and non-food applications.


2011 ◽  
Vol 33 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Annete de Jesus Boari Lima ◽  
Angelita Duarte Corrêa ◽  
Ana Maria Dantas-Barros ◽  
David Lee Nelson ◽  
Ana Carolina Lourenço Amorim

The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed) of the Paulista (Plinia cauliflora) and Sabará (Plinia jaboticaba) jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.


2018 ◽  
Author(s):  
Theodora Nah ◽  
Hongyu Guo ◽  
Amy P. Sullivan ◽  
Yunle Chen ◽  
David J. Tanner ◽  
...  

Abstract. The implementation of stringent emission regulations has resulted in the decline of anthropogenic pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx) and carbon monoxide (CO). In contrast, ammonia (NH3) emissions are largely unregulated, with emissions projected to increase in the future. We present real-time aerosol and gas measurements from a field study conducted in an agricultural-intensive region in the southeastern U.S. during the fall of 2016 to investigate how NH3 affects particle acidity and SOA formation via the gas-particle partitioning of semi-volatile organic acids. Particle water and pH were determined using the ISORROPIA-II thermodynamic model and validated by comparing predicted inorganic HNO3-NO3− and NH3-NH4+ gas-particle partitioning ratios with measured values. Our results showed that despite the high NH3 concentrations (study average 8.1 ± 5.2 ppb), PM1 were highly acidic with pH values ranging from 0.9 to 3.8, and a study-averaged pH of 2.2 ± 0.6. PM1 pH varied by approximately 1.4 units diurnally. Formic and acetic acids were the most abundant gas-phase organic acids, and oxalate was the most abundant particle-phase water-soluble organic acid anion. Measured particle-phase water-soluble organic acids were on average 6 % of the total non-refractory PM1 organic aerosol mass. The measured molar fraction of oxalic acid in the particle phase (i.e., particle-phase oxalic acid molar concentration divided by the total oxalic acid molar concentration) ranged between 47 and 90 % for PM1 pH 1.2 to 3.4. The measured oxalic acid gas-particle partitioning ratios were in good agreement with their corresponding thermodynamic predictions, calculated based on oxalic acid’s physicochemical properties, ambient temperature, particle water and pH. In contrast, gas-particle partitioning of formic and acetic acids were not well predicted for reasons currently unknown. For this study, higher NH3 concentrations relative to what has been measured in the region in previous studies had minor effects on PM1 organic acids and their influence on the overall organic aerosol and PM1 mass concentrations.


2012 ◽  
Vol 178-181 ◽  
pp. 1083-1092
Author(s):  
Xing Run Wang ◽  
Yan Xia Zhang ◽  
Jian Min Shu

With the building wastes contaminated by chromium in Haibei Chemical Plan in China as objects, it studied the contents of total Cr and Cr (Ⅵ) of different sizes, analyzed the effect of 6 different washing agents, discussed the removal mechanisms of 6 different washing agents for Cr in various forms, and finally selected applicable washing agent. As the results, particle size had little impact on the contents of total Cr and Cr (Ⅵ); after one washing with water, the removal rate of total Cr and Cr (Ⅵ) was 75% and 78%, respectively, and after the second washing with 6 agents, the removal rate of citric acid was the highest, above 90% for total Cr and above 99% for hexavalent chromium; the pH of building wastes were reduced by citric acid, and under acid condition, hexavalent chromium was reduced to trivalent chromium spontaneously by organic acid, which led to better removal rate of acid soluble Cr and reducible Cr; due to the complexing action, citric acid had best removal rate for oxidizable trivalent chromium. In conclusion, citric acid is the most applicable second washing agent for building wastes.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1920
Author(s):  
Yogesh Sutar ◽  
Tejabhiram Yadavalli ◽  
Sagar Kumar Paul ◽  
Sudipta Mallick ◽  
Raghuram Koganti ◽  
...  

BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.


2018 ◽  
Vol 54 (4A) ◽  
pp. 290
Author(s):  
Nguyen Thi Hanh

Ninh Thuan grapes are famous specialty of Vietnam. After harvesting, they are very susceptible to damage if not preserved in time. This study aimed to find the minimal inhibitory concentration and minimal bactericidal concentrations of organic acids, such as lactic acid, citric acid, and ascorbic acid towards seven bacteria previously isolated from Ninh thuan grapes (Empedobacter  brevis, Citrobacter sp. Enterobacterium ludwigii, Bacillus cereus, Flavobacterium sp., Pseudomonas oryzihabitans and Bacillus thuringiensis) in order to apply in pretreatment of grapes prior to storage. The Minimal Inhibitory Concentration (MIC) was determined by the binary dilution method. 0.1 ml of each dilution of test acids with initial concentration of 3 % was mixed with 0.1 ml of bacteria (c.a. 5.105 CFU/ml), in 96-culturing-well plate. Innoculated plate was incubated for 24 hours at temperature of 37 °C. Optical density was measured at 620 nm wavelength by a Microplate reader device. For Minimal Bactericidal Concentration (MBC) determination, 0.1 ml of bacteria (c.a.5.105 CFU/ml) was mixed with 0.4 ml liquid medium of Tryptone Glucose Agar (TGA) and of 0.5 ml acid at above concentrations, culturing within 24 hours at temperature of 37 °C. After 24 hours, they were dropped onto TGA agar plates, and cultured for 24 hours at 37 °C. The results showed that, the MIC and MBC of citric acid toward Empedobacter brevis were 0.12 mg/ml and 0.12 mg/ml; Citrobacter sp. were 0.9 mg/ml and 3.8 mg/ml; Enterobacterium ludwigii were 0.45 mg/ml and 1.9 mg/ml; Bacillus cereus were  0.9 mg/ml and 0.9 mg/ml; Flavobacterium sp. were 0.12 mg/ml  and 0.45 mg/ml; Pseudomonas oryzihabitans were 0.12 mg/ml and 0.45 mg/ml and Bacillus thuringiensis were 0.12 mg/ml  and 0.9 mg/ml, respectively. Similarly, MIC and MBC of  lactic acid toward: Empedobacter brevis were 0.12 mg/ml and 0.23 mg/ml;Citrobacter sp. were 0.9 mg/ml and 1.9 mg/ml; Enterobacterium ludwigii were 0.45 mg/ml and 0.9 mg/ml; Bacillus cereus were 0.23 mg/ml and 0.45 mg/ml; Flavobacterium sp. were 0.12 mg/ml and 1.9 mg/ml;  Pseudomonas oryzihabitans  were 0.23 mg/ml and 1.9 mg/ml and Bacillus thuringiensis were 0.12 mg/ml and 1.9 mg/ml, respectively. Ascorbic acid was found to be inefficient for use as antimicrobial agent against isolated bacteria. The above results suggested that citric and lactic acids could be used at maximal concentrations of 3.8 mg/ml and 1.9 mg/ml, respectively to suppress bacteria from grapes. This finding would contribute to develop method for pretreatment of grapes in fresh grape preservation techniques. 


2019 ◽  
Vol 47 (4) ◽  
pp. 1094-1099
Author(s):  
Aysen KOC ◽  
Hakan KELES ◽  
Sezai ERCISLI

In this study, fruits from seed propagated walnut (Juglans regia L.) trees were collected two consecutive years in harvest seasons in Yozgat province in Turkey.  Considering two years results, promising five genotypes were determined as cultivar candidate. In the promising genotypes, nut weight ranged from 12.55 (Y11) to 15.08 g (Y15), kernel weight ranged from 5.23 (Y11) to 7.34 g (Y15) and kernel ratio varied between 41.67 (Y11) to 50.84% (Y1), respectively. Linoleic acid was the only polyunsaturated fatty acids and oleic, palmitoleic and gondoic acids determined as major monounsaturated acids ranged from 30.36 to 48.43%, 0.05 to 0.14% and 0.22 to 0.29%, respectively. Propylparaben was the major phenolic acid among the determined phenolic acids in fruits of all five promising genotypes and Y16 had the highest amount of propylparaben (128.08 mg per kg) in its kernel. Malic and tartaric acid were the major organic acids in walnut kernels ranged from 47.88 to 78.51 mg per 100 g and 30.27 to 49.60 mg per 100 g, respectively. L-ascorbic acid was the another organic acids in walnut kernels ranged from 10.71 to 19.71 mg per 100 g. Citric acid was non-determined in kernels of Y1, Y14 and Y15 but determined at kernels of Y11 and Y16 as 4.51 and 7.55 mg per 100 g, respectively. It was determined that the oxalic, malonic, succinic, maleic and fumaric acid contents varied between 8.39-12.08 mg per 100 g, 6.02-9.19 mg per 100 g, 2.86-5.32 mg per 100 g, 0.26-3.00 mg per 100 g and 0.26-0.58 mg per 100 g, respectively.   ********* In press - Online First. Article has been peer reviewed, accepted for publication and published online without pagination. It will receive pagination when the issue will be ready for publishing as a complete number (Volume 47, Issue 4, 2019). The article is searchable and citable by Digital Object Identifier (DOI). DOI link will become active after the article will be included in the complete issue. *********


2020 ◽  
Vol 145 ◽  
pp. 01032
Author(s):  
Changbin Wei ◽  
Jian Qiao ◽  
Xinming Tang ◽  
Qingze Yan ◽  
Lizhu Tang ◽  
...  

The glucose, fructose, sucrose, and organic acids in the pulp of “Jinhuang” mango were analyzed using the HPLC method and the effect of bagging on fruit quality was researched during the postharvest storage. The results showed that there was a certain difference in the content of sugar and acid among the three treatments. The effect of bagging treatments on fructose, glucose, and sucrose in the fruit of “Jinhuang” mango was mainly reflected in sucrose. The treatments of white bagging (WB) and black bagging (BB) delayed the production of sucrose and the decomposition of citric acid, and increased the content of ascorbic acid and quinine. Based on sugar-acid ratio, the flavor of the three treatments was evaluated as: CK> WB> BB. The fruit quality of “Jinhuang” mango was affected by bagging treatments to a certain extent.


Sign in / Sign up

Export Citation Format

Share Document