scholarly journals Organic Acid Profile of “Batuan” (Garcinia binucao [Blco] Choisy) Fruit

2017 ◽  
pp. 25-33 ◽  
Author(s):  
Elizabeth Quevedo ◽  
Erlinda Dizon ◽  
Florinia Merca

“Batuan” fruit (Garcinia binucao [Blco.] Choisy), an indigenous acidulant grown in the Visayas State University, Baybay City, Leyte was analyzed for its organic acid profile at different stages of maturity for the development of potential food and non-food products. The analysis of organic acid content was done using Reverse Phase-High Performance Liquid Chromatography. Organic acids in the dried, powdered “batuan” fruit samples were extracted with the mobile phase (50mM KH2PO4/ H3PO4, pH2.8). The sample extracts and organic acid standards (oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, lactic acid, acetic acid, and succinic acid) were injected to RP-HPLC under isocratic elution with the mobile phase at a flow rate of 1.0mL min-1 and using UV-vis detection at 210nm. “Batuan” fruit samples contain oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, succinic acid, acetic acid, lactic acid, and a few unidentified organic acids. Among the organic acids present, citric acid accumulated the highest in the ripe “batuan” fruit; fumaric acid, the least. Results of this study show that “batuan” fruit could be a good natural source of acidulant for food and non-food applications.

2011 ◽  
Vol 33 (2) ◽  
pp. 540-550 ◽  
Author(s):  
Annete de Jesus Boari Lima ◽  
Angelita Duarte Corrêa ◽  
Ana Maria Dantas-Barros ◽  
David Lee Nelson ◽  
Ana Carolina Lourenço Amorim

The aim of this work was to determine the sugar, organic acid and mineral compositions of the whole fruit and fractions (skin, pulp and seed) of the Paulista (Plinia cauliflora) and Sabará (Plinia jaboticaba) jabuticaba tree genotypes, as well as the oil compositions of their skin and seeds. High levels of sugar, especially fructose, followed by glucose and sucrose, were encountered in the fruit. In the Paulista genotype, higher levels of total and reducing sugars were found in the pulp and skin, which was not observed when comparing the whole fruit of both genotypes. Five organic acids were found in the whole fruit and in the fractions of the two jabuticaba genotypes in quantitative order: citric acid > succinic acid > malic acid > oxalic acid > acetic acid. Potassium was the most abundant mineral found. This fruit was also shown to be rich in magnesium, phosphorus, calcium and copper. The seed oil had nearly the same constitution as the oil extracted from the skin in both genotypes and the major compounds were an unidentified phytosterol, palmitic, linoleic and oleic acids, and squalene.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 761-761
Author(s):  
Miao Li ◽  
Kai Li ◽  
Hao Song

Abstract Objectives The natural fermentation broth of vegetables and fruits is produced by anaerobic fermentation of vegetables and fruits, so as to form a fermentation beverage with complex components. Some components in the fermentation broth can promote digestion and absorption, alleviate constipation and beautify the face. Fruit and vegetable fermentation can be added into baking products to make natural yeast bread with good flavor and long shelf life. The fermentation broth has broad market application prospects. The contents of organic acids may play an important role in the flavor and nutrition of the natural fermentation broth of vegetables and fruits, which are still under researching. Methods HPLC (High Performance Liquid Chromatography) was used to detect the contents of several kinds of organic acids, such as acetic acid, lactic acid, oxalic acid, citric acid, succinic acid, tartaric acid. Results The contents of acetic acid, lactic acid, oxalic acid, citric acid, succinic acid, tartaric acid in compound natural fermentation broth (grapefruit + apple + lemon) was 5.650 mg/mL, 0.171 mg/mL, 0.013 mg/mL, 0.213 mg/mL, 0.763 mg/mL, 0.628 mg/mL. Conclusions The contents of organic acids were significantly different among different natural fermentation liquors of vegetables and fruits due to different raw materials, formulations and fermentation time. Funding Sources Beijing Yiqing Holding Co., Ltd.


Author(s):  
Loredana Leopold ◽  
Diehl Horst ◽  
Carmen Socaciu

Organic acids give fruit products their characteristic tartness and vary in combination and in concentrations among different juices. The organic acid profile can be used to identify a juice or verify its purity. Typically, organic acids in fruit juices are identified and quantified by using methods such as HPLC. In this procedure, reversed phase column is used to separate and identificate six organic acids. Because several of the analytes are extremely difficult to resolve, a aqueous mobile phase is needed to enhance interaction between the acids and the C18 stationary phase.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1920
Author(s):  
Yogesh Sutar ◽  
Tejabhiram Yadavalli ◽  
Sagar Kumar Paul ◽  
Sudipta Mallick ◽  
Raghuram Koganti ◽  
...  

BX795 is a TANK binding kinase-1 inhibitor that has shown excellent therapeutic activity in murine models of genital and ocular herpes infections on topical delivery. Currently, only the BX795 free base and its hydrochloride salt are available commercially. Here, we evaluate the ability of various organic acids suitable for vaginal and/or ocular delivery to form BX795 salts/cocrystals/co-amorphous systems with the aim of facilitating pharmaceutical development of BX795. We characterized BX795-organic acid coevaporates using powder X-ray diffractometry, Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy, 1H-nuclear magnetic resonance spectroscopy, thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) to elucidate the interaction between BX795 and various organic acids such as taurine, maleic acid, fumaric acid, tartaric acid, and citric acid. Furthermore, using human corneal epithelial cells and HeLa cells, we evaluated BX795-organic acid coevaporates for in vitro cytocompatibility and in vitro antiviral activity against herpes simplex virus-type 1 (HSV-1) and type-2 (HSV-2). Our studies indicate that BX795 forms co-amorphous systems with tartaric acid and citric acid. Interestingly, the association of organic acids with BX795 improved its thermal stability. Our in vitro cytocompatibility and in vitro antiviral studies to screen suitable BX795-organic acid coevaporates for further development show that all BX795-organic acid systems, at a concentration equivalent to 10 µM BX795, retained antiviral activity against HSV-1 and HSV-2 but showed differential cytocompatibility. Further, dose-dependent in vitro cytocompatibility and antiviral activity studies on the BX795-fumaric acid system, BX795-tartaric acid co-amorphous system, and BX795-citric acid co-amorphous system show similar antiviral activity against HSV-1 and HSV-2 compared to BX795, whereas only the BX795-citric acid co-amorphous system showed higher in vitro cytocompatibility compared to BX795.


2020 ◽  
Vol 11 ◽  
Author(s):  
Fu-gui Jiang ◽  
Hai-jian Cheng ◽  
Dong Liu ◽  
Chen Wei ◽  
Wen-juan An ◽  
...  

We investigated the variation in microbial community and fermentation characteristics of whole-plant corn silage after treatment with lactic acid bacteria (LAB) and organic acids. The fresh corn forages were treated with a combination of L. acidophilus and L. plantarum (106 CFU/g fresh material) or a 7:1:2 ratio of formic acid, acetic acid, and propionic acid (6 mL/g fresh material) followed by 45 or 90 days of ensiling. Silages treated with LAB showed increased lactic acid content and decreased pH after 45 days. Although treatment with LAB or organic acids decreased the common and unique operational taxonomic units, indicating a reduction in microbial diversity, the relative abundance of Lactobacillus was elevated after 45 and 90 days compared with control, which was more distinct in the organic acid groups. Moreover, we found higher levels of acetic acid and increased abundance of Acetobacter in silages treated with organic acids whereas undesirable microorganisms such as Klebsiella, Paenibacillus, and Enterobacter were reduced. In summary, the quality of corn silages was improved by LAB or organic acid treatment in which LAB more effectively enhanced lactic acid content and reduced pH while organic acid inhibited the growth of undesirable microorganisms.


2016 ◽  
Vol 79 (12) ◽  
pp. 2184-2189 ◽  
Author(s):  
MYEONGGEUN OH ◽  
JOONGJAE LEE ◽  
YOONHWA JEONG ◽  
MISOOK KIM

ABSTRACT We investigated the synergistic effects of lysozyme combined with organic acids to inhibit the growth of Listeria monocytogenes. The antilisterial effects of the combination of lysozyme and acetic acid, citric acid, lactic acid, malic acid, or succinic acid were evaluated using the checkerboard method and time-kill assay. The MIC was 25,000 mg/liter for lysozyme, 625 mg/liter for acetic acid, and 1,250 mg/liter for the other acids. The MBC was 10,000 mg/liter for all of the tested organic acids. The combination of lysozyme and each organic acid showed synergistic effects via the checkerboard method; however, the time-kill assay showed synergistic effects for only three combinations of 1,250 mg/liter lysozyme with succinic acid (312 and 625 mg/liter) or malic acid (625 mg/liter). The results of this study indicate that the combination of lysozyme and malic acid or succinic acid can be effectively used as a food preservative to control L. monocytogenes.


1999 ◽  
Vol 62 (5) ◽  
pp. 451-455 ◽  
Author(s):  
JEE-HOON RYU ◽  
YUN DENG ◽  
LARRY R. BEUCHAT

A study was done to determine if various organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted Escherichia coli O157:H7 cells. E. coli O157:H7 strain E0139, isolated from venison jerky, was grown in tryptic soy broth (TSB) and in TSB supplemented with 1% glucose (TSBG) for 18 h at 37°C, then plated on tryptic soy agar (TSA) acidified with malic, citric, lactic, or acetic acid at pH 5.4, 5.1, 4.8, 4.5, 4.2, and 3.9. Regardless of whether cells were grown in TSB or TSBG, visible colonies were not formed when plated on TSA acidified with acetic, lactic, malic, or citric acids at pH values of ≤5.4, ≤4.5, ≤4.2, or ≤4.2, respectively. Cells not adapted to reduced pH did not form colonies on TSA acidified with lactic acid (pH 3.9) or acetic acid (pH 3.9 and 4.2); however, a portion of acid-adapted cells remained viable on TSA containing lactic acid (pH 3.9) or acetic acid (pH 4.2) and could be recovered in TSB. Inactivation of acid-adapted cells was less than that of unadapted cells in TSB acidified at pH 3.9 with citric, lactic, or acetic acid and at pH 3.4 with malic acid. Significantly (P ≤ 0.05) higher numbers of acid-adapted cells, compared with unadapted cells, were detected 12 h after inoculation of TSB acidified with acetic acid at pH 3.9; in TSB containing lactic acid (pH 3.9), the number of acid-adapted cells was higher than the number of unadapted cells after 5 h. In TSB acidified at pH 3.9 with citric acid or pH 3.4 with malic acid, significantly higher numbers of acid-adapted cells survived. This study shows that organic acids differ in their inhibitory or lethal activity against acid-adapted and unadapted E. coli O157:H7 cells, and acid-adapted cells are more tolerant than unadapted cells when subsequently exposed to reduced pH caused by these acids.


2011 ◽  
Vol 393-395 ◽  
pp. 709-712 ◽  
Author(s):  
Fu Xing Cui ◽  
Jin Feng Song ◽  
Ya Fen Guo ◽  
Jin Zhong Xu

The effects and mechanism of different concentration organic acids and organic salts solution on Al availability of dark brown forest soil were studied. It was resulted that, oxalic acid/oxalate and citric acid/citrate substantially stimulated soil Al release of dark brown forest soil. The effect of organic acids/salts on Al release would be strengthen with increasing of their concentrations.The contents of Al released from A1 horizon was higher than that from B horizon. Organic salt solutions had much higher effects than organic acid the same in concentration, i.e. citrate>citric acid, oxalate>oxalic acid. Therefore, the mechanism of organic acid/salts triggering release of soil Al was assumed to be dominated by complexation reactions of organic anions. Citric acid/ citrate had much higher effect than oxalic acid/ oxalate at same concentration to A1 and B horizons, i.e. citrate> oxalate, citric acid>oxalic acid, which was primarily related with the greater complexing capacities and dissociation constants of citric acid.


2021 ◽  
Vol 7 ◽  
Author(s):  
Hui Mei Chang ◽  
Hooi Ling Foo ◽  
Teck Chwen Loh ◽  
Eric Teik Chung Lim ◽  
Nur Elina Abdul Mutalib

Despite inflammation being a protective natural defense against imbalance stressors in the body, chronic inflammation could lead to the deterioration of immune response, low production, and poor performance in livestock as well as severe economic losses to the farmers. Postbiotics produced by Lactiplantibacillus plantarum has been reported recently to be a natural source of antioxidant, promoting growth performance, anti-inflammation, and immune responses. However, the effects of fermentation media on the compositions of L. plantarum postbiotic have not been reported elsewhere. Hence, a comparative study was conducted to compare the volatile compounds, organic acid composition, and antioxidant and antimicrobial activities of postbiotics produced by six strains of L. plantarum cultivated by using formulated media and the commercial de Man, Rogosa, and Sharpe (MRS) medium as a control. Postbiotics RG14, RI11, and UL4 produced by using formulated media exhibited higher inhibitory activity against Pediococcus acidilactici 446, Escherichia coli E-30, Salmonella enterica CS3, and vancomycin-resistant Enterococci except for Listeria monocytogenes LS55. As for the antioxidant activity, hydroxyl radical scavenging activity was enhanced in formulated media, whereas reducing power activity was the highest in postbiotic RI11. Three organic acids, namely, acetic acid, caproic acid, and lactic acid, were detected in the postbiotic produced by various L. plantarum strains. The concentration of acetic acid was influenced by the fermentation media, whereas caproic acid was detected as the highest in postbiotic RG11. Lactic acid was the predominant compound detected in all the postbiotics and had the significantly highest concentration in postbiotic RS5 when produced by using the MRS medium. Intermediary and pyrrole compounds were the other main compounds that were detected by using GC-MS. Positive correlations were found between organic acid production and inhibitory activity, as well as antioxidant activity exhibited by postbiotics. In conclusion, the compositions and functional characteristics of postbiotics produced by the six strains of L. plantarum were strain-dependent and affected greatly by the fermentation medium. The effects of postbiotic composition on the functional characteristics of postbiotics were elucidated in this study to warrant their applications as a promising beneficial natural growth promoter for the livestock industry.


2011 ◽  
Vol 194-196 ◽  
pp. 802-805
Author(s):  
Zhan Sheng Wu ◽  
Xi Fang Sun ◽  
Chun Li

Effects of different bentonite clarificants on the main organic acids contents in wine were investigated during the clarification process. Citric acid (CA) concentration changed slightly during the first day with average elimination ratio (AER) of 0.57%, and tartaric acid (TA), malic acid (MA), lactic acid (LA) and succinic acid (SA) were varied with AER of 12.39%, 9.80%, 7.27% and 6.27%, respectively, while acetic acid (AA) has the biggest AER of 15.42%. The pH and titratable acidity were significantly dependent on the variation of CA and TA. The –OH group in organic acids could be combined with –Si-O or –AlO groups in bentonite surface by hydrogen bond, which could caused the decrease in concentration various organic acids.


Sign in / Sign up

Export Citation Format

Share Document