PHYSICAL ASPECTS OF THREE DIMENSIONAL WAVE REFLECTIONS IN TRANSONIC WIND TUNNELS AT MACH NUMBER 1.20 (PERFORATED, SLOTTED, AND COMBINED SLOTTED-PERFORATED WALLS)

1956 ◽  
Author(s):  
B. H. GOETHERT
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroshi Yamashita ◽  
Naoshi Kuratani ◽  
Masahito Yonezawa ◽  
Toshihiro Ogawa ◽  
Hiroki Nagai ◽  
...  

This study describes the start/unstart characteristics of a finite and rectangular supersonic biplane wing. Two wing models were tested in wind tunnels with aspect ratios of 0.75 (model A) and 2.5 (model B). The models were composed of a Busemann biplane section. The tests were carried out using supersonic and transonic wind tunnels over a Mach number range of0.3≤M∞≤2.3with angles of attack of 0°, 2°, and 4°. The Schlieren system was used to observe the flow characteristics around the models. The experimental results showed that these models had start/unstart characteristics that differed from those of the Busemann biplane (two dimensional) owing to three-dimensional effects. Models A and B started at lower Mach numbers than the Busemann biplane. The characteristics also varied with aspect ratio: model A (1.3<M∞<1.5) started at a lower Mach number than model B (1.6<M∞<1.8) owing to the lower aspect ratio. Model B was located in the double solution domain for the start/unstart characteristics atM∞=1.7, and model B was in either the start or unstart state atM∞=1.7. Once the state was determined, either state was stable.


2017 ◽  
Vol 31 (5) ◽  
pp. 539-548
Author(s):  
Ping Wang ◽  
Ning-chuan Zhang ◽  
Shuai Yuan ◽  
Wei-bin Chen

2015 ◽  
Vol 17 (30) ◽  
pp. 19806-19814 ◽  
Author(s):  
Mahmoud M. Ayass ◽  
Istvan Lagzi ◽  
Mazen Al-Ghoul

We report multiple three-dimensional wave phenomena in a heterogeneous system due to anomalous diffusion.


2020 ◽  
Vol 64 (01) ◽  
pp. 23-47
Author(s):  
Robinson Peric ◽  
Moustafa Abdel-Maksoud

This article reviews different types of forcing zones (sponge layers, damping zones, relaxation zones, etc.) as used in finite volume-based flow simulations to reduce undesired wave reflections at domain boundaries, with special focus on the case of strongly reflecting bodies subjected to long-crested incidence waves. Limitations and possible sources of errors are discussed. A novel forcing-zone arrangement is presented and validated via three-dimensional (3D) flow simulations. Furthermore, a recently published theory for predicting the forcing-zone behavior was investigated with regard to its relevance for practical 3D hydrodynamics problems. It was found that the theory can be used to optimally tune the case-dependent parameters of the forcing zones before running the simulations. 1. Introduction Wave reflections at the boundaries of the computational domain can cause significant errors in flow simulations, and must therefore be reduced. In contrast to boundary element codes, where much progress in this respect has been made decades ago (see e.g., Clement 1996; Grilli &Horillo 1997), for finite volume-based flow solvers, there are many unresolved questions, especially:How to reliably reduce reflections and disturbances from the domain boundaries?How to predict the amount of undesired wave reflection before running the simulation? This work aims to provide further insight to these questions for flow simulations based on Navier-Stokes-type equations (Reynolds-averaged Navier-Stokes, Euler equations, Large Eddy Simulations, etc.), when using forcing zones to reduce undesired reflections. The term "forcing zones" is used here to describe approaches that gradually force the solution in the vicinity of the boundary towards some reference solution, as described in Section 2; some examples are absorbing layers, sponge layers, damping zones, relaxation zones, or the Euler overlay method (Mayer et al. 1998; Park et al. 1999; Chen et al. 2006; Choi &Yoon 2009; Jacobsen et al. 2012; Kimet al. 2012; Schmitt & Elsaesser 2015; Perić & Abdel-Maksoud 2016a; Vukčević et al. 2016).


Parasitology ◽  
1990 ◽  
Vol 101 (2) ◽  
pp. 301-308 ◽  
Author(s):  
D. L. Lee ◽  
W. D. Biggs

Locomotion of adult Nippostrongylus brasiliensis has been studied in saline, in 0.6% agar, in sodium alginate of different viscosities and amongst sand grains in these media. In saline the nematode formed two-dimensional waves but there was little forward progression. Amongst sand grains in saline the nematode moved forwards by thrusting against sand grains, but thigmokinetic behaviour later resulted in quiescence. In 0.6% agar and in alginates of weak viscosity the nematode produced two-dimensional waves and sometimes a three-dimensional helical wave which resulted in forward movement. The formation of three-dimensional waves and the distance travelled increased with increasing viscosity up to 4% sodium alginate and also amongst sand gains in these media. In 8% sodium alginate the nematode became coiled like a spring but remained almost stationary. The three-dimensional wave is formed with torsion and obtains thrust from the viscous medium. In the intestine of the host thrust will be obtained from the mucus and villi of the intestinal mucosa. The ability of this nematode to move by two-and three-dimensional undulatory propulsion is probably related to its complex ridged cuticle. Attention is drawn to the role that increased viscosity of mucus may play in entrapping nematodes during their immune rejection.


Sign in / Sign up

Export Citation Format

Share Document