FAST RESPONSE SOLID STATE PME DETECTOR FOR LASER SIGNALS

1962 ◽  
Author(s):  
A. Boatright ◽  
H. Mette
Keyword(s):  
1998 ◽  
Vol 52 (5) ◽  
pp. 750-754 ◽  
Author(s):  
A. Neal Watkins ◽  
Brett R. Wenner ◽  
Jeffrey D. Jordan ◽  
Wenying Xu ◽  
James N. Demas ◽  
...  

A novel sensor for quantifying molecular O2 based entirely on solid-state electronics is presented. The sensor is based on the luminescence quenching of tris(4,7-diphenyl-1, 10-phenanthroline)ruthenium(II) ([Ru(dpp)3]2+) by molecular O2. The sensor involves immobilizing the ruthenium complex within a porous sol-gel-processed glass film and casting this film directly onto the surface of a blue quantum-well light-emitting diode (LED). The ruthenium complex is excited by the LED, the [Ru(dpp)3]2+ emission is filtered from the excitation with a low-cost acrylic color filter, and the emission is detected with an inexpensive silicon photodiode. The sensor response to gaseous O2 and dissolved O2 in water is presented. The sensor exhibits fast response times and good reversibility, and detection limits are 0.5%, 0.02%, and 110 ppb, respectively, for O2 in the gaseous (linear Stern–Vobner and multi-site Stern–Volmer analysis) and aqueous phase. This sensor provides a cost-effective alternative to traditional electrochemical-based O2 sensing and also provides a platform for other optically based sensors.


2017 ◽  
Vol 251 ◽  
pp. 795-803 ◽  
Author(s):  
Mateja Hajduković ◽  
Mirela Samardžić ◽  
Olivera Galović ◽  
Aleksandar Széchenyi ◽  
Milan Sak-Bosnar

2020 ◽  
Vol 41 (8) ◽  
pp. 1225-1228 ◽  
Author(s):  
Rishibrind Kumar Upadhyay ◽  
Abhinav Pratap Singh ◽  
Deepchandra Upadhyay ◽  
Deepak Kumar Jarwal ◽  
Chandan Kumar ◽  
...  

2021 ◽  
Vol 11 (12) ◽  
pp. 5549
Author(s):  
You Wang ◽  
Siyuan Ma ◽  
Hongqun Zou ◽  
Zhenyu Wu ◽  
Zhiyuan Luo ◽  
...  

Protoporphyrin IX-based all-solid-state choline (Ch) ion-selective electrodes (ISEs) were fabricated and characterized. Poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT/PSS) functioning as an ion-to-electron transducer was electropolymerized on the gold wire (0.5 mm diameter). The conductive polymer was covered with a Ch selective membrane containing protoporphyrin IX as an ionophore, which exhibited a lower detection limit of 0.49 μM with the potentiometric method. The Ch sensor performed a wide linear range from 1 μM to 1 mM, a fast response time of less than 5 s, and a decent selectivity of common inorganic and organic ions in the human body. Characteristics such as pH and temperature stability, life span, reproducibility and repeatability were also investigated to be satisfied. With the background of artificial cerebrospinal fluid, the recovery rate in 10−5 M of Ch solution was measured by the standard addition method, revealing the potential for biological application.


2021 ◽  
Author(s):  
Zewei Shao ◽  
Aibin huang ◽  
Chen Ming ◽  
John Bell ◽  
Pu Yu ◽  
...  

Abstract All-solid-state electrochromic devices (ECDs) for smart-window applications currently suffer from limited ion diffusion speed, which lead to slow coloration and bleaching processes. Here, we design an all-solid-state tandem structure with protons as diffusing species achieving an ultrafast switching ECD. We use WO3 as the electrochromic material, while poly(3,4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) as the solid-state proton source to enable fast switching. This structure by itself exhibits low optical modulation (i.e., difference of on/off transmittance). We further introduce a solid polymeric electrolyte layer on top of PEDOT:PSS to form a tandem structure, which provides Na+ ions to PEDOT:PSS and pump protons there to the WO3 layer through ion exchange. Our new all-solid-state ECD features high optical modulation (>92% at 650 nm), fast response (coloration to 90% in 0.7 s and bleaching to 65% in 0.9 s and 90% in 7.1 s) and excellent stability (<10% degradation after 3000 cycles). Large-area (30×40 cm2) as well as flexible devices are fabricated to demonstrate the great potential for scaling up.


RSC Advances ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 10043-10053
Author(s):  
Lingwei Cao ◽  
Panlai Li ◽  
Jia Cui ◽  
Xuejiao Wang ◽  
Yao Yao ◽  
...  

Near-infrared spectroscopy is developing rapidly in the fields of human detection and food analysis due to its fast response and non-invasive characteristics.


Chemosensors ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 333
Author(s):  
Irena Ivanišević ◽  
Stjepan Milardović ◽  
Antonia Ressler ◽  
Petar Kassal

A planar solid-state ammonium-selective electrode, employing a composite mediator layer of graphite particles embedded in a polyvinyl butyral matrix on top of an inkjet-printed silver electrode, is presented in this paper. The effect of graphite powder mass fraction on the magnitude of the potentiometric response of the sensor was systematically verified using a batch-mode and a flow injection measurement setup. Under steady-state conditions, the paper electrode provided a Nernstian response of 57.30 mV/pNH4 over the concentration range of 10−5 M to 10−1 M with a detection limit of 4.8 × 10−6 M, while the analytical performance of the array in flow mode showed a narrower linear range (10−4 M to 10−1 M; 60.91 mV/pNH4 slope) with a LOD value of 5.6 × 10−5 M. The experimental results indicate that the prepared electrode exhibited high stability and fast response to different molar concentrations of ammonium chloride solutions. The pH-response of the paper NH4-ISE was also investigated, and the sensor remained stable in the pH range of 2.5–8.5. The potentiometric sensor presented here is simple, lightweight and inexpensive, with a potential application for in-situ analysis of environmental water samples.


2020 ◽  
Vol 265 ◽  
pp. 127464 ◽  
Author(s):  
Wenjie Li ◽  
Xiang Zhang ◽  
Xi Chen ◽  
Yingming Zhao ◽  
Lebin Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document