scholarly journals Protoporphyrin IX Based All-Solid-State Ion-Selective Electrodes for Choline Determination In Vitro

2021 ◽  
Vol 11 (12) ◽  
pp. 5549
Author(s):  
You Wang ◽  
Siyuan Ma ◽  
Hongqun Zou ◽  
Zhenyu Wu ◽  
Zhiyuan Luo ◽  
...  

Protoporphyrin IX-based all-solid-state choline (Ch) ion-selective electrodes (ISEs) were fabricated and characterized. Poly (3,4-ethylene dioxythiophene) doped with poly (styrene sulfonate) (PEDOT/PSS) functioning as an ion-to-electron transducer was electropolymerized on the gold wire (0.5 mm diameter). The conductive polymer was covered with a Ch selective membrane containing protoporphyrin IX as an ionophore, which exhibited a lower detection limit of 0.49 μM with the potentiometric method. The Ch sensor performed a wide linear range from 1 μM to 1 mM, a fast response time of less than 5 s, and a decent selectivity of common inorganic and organic ions in the human body. Characteristics such as pH and temperature stability, life span, reproducibility and repeatability were also investigated to be satisfied. With the background of artificial cerebrospinal fluid, the recovery rate in 10−5 M of Ch solution was measured by the standard addition method, revealing the potential for biological application.

The Analyst ◽  
2011 ◽  
Vol 136 (16) ◽  
pp. 3252 ◽  
Author(s):  
Jean-Pierre Veder ◽  
Roland De Marco ◽  
Graeme Clarke ◽  
San Ping Jiang ◽  
Kathryn Prince ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6658
Author(s):  
Siyuan Ma ◽  
You Wang ◽  
Wei Zhang ◽  
Ye Wang ◽  
Guang Li

Solid-contact ion-selective electrodes for histamine (HA) determination were fabricated and studied. Gold wire (0.5 mm diameter) was coated with poly(3,4-ethlenedioxythiophene) doped with poly(styrenesulfonate) (PEDOT:PSS) as a solid conductive layer. The polyvinyl chloride matrix embedded with 5,10,15,20-tetraphenyl(porphyrinato)iron(iii) chloride as an ionophore, 2-nitrophenyloctyl ether as a plasticizer and potassium tetrakis(p-chlorophenyl) borate as an ion exchanger was used to cover the PEDOT:PSS layer as a selective membrane. The characteristics of the HA electrodes were also investigated. The detection limit of 8.58 × 10−6 M, the fast response time of less than 5 s, the good reproducibility, the long-term stability and the selectivity in the presence of common interferences in biological fluids were satisfactory. The electrode also performed stably in the pH range of 7–8 and the temperature range of 35–41 °C. Additionally, the recovery rate of 99.7% in artificial cerebrospinal fluid showed the potential for the electrode to be used in biological applications.


2021 ◽  
Vol 14 (3) ◽  
pp. 229
Author(s):  
Yo Shinoda ◽  
Daitetsu Kato ◽  
Ryosuke Ando ◽  
Hikaru Endo ◽  
Tsutomu Takahashi ◽  
...  

5-Aminolevulinic acid (5-ALA) is an amino acid derivative and a precursor of protoporphyrin IX (PpIX). The photophysical feature of PpIX is clinically used in photodynamic diagnosis (PDD) and photodynamic therapy (PDT). These clinical applications are potentially based on in vitro cell culture experiments. Thus, conducting a systematic review and meta-analysis of in vitro 5-ALA PDT experiments is meaningful and may provide opportunities to consider future perspectives in this field. We conducted a systematic literature search in PubMed to summarize the in vitro 5-ALA PDT experiments and calculated the effectiveness of 5-ALA PDT for several cancer cell types. In total, 412 articles were identified, and 77 were extracted based on our inclusion criteria. The calculated effectiveness of 5-ALA PDT was statistically analyzed, which revealed a tendency of cancer-classification-dependent sensitivity to 5-ALA PDT, and stomach cancer was significantly more sensitive to 5-ALA PDT compared with cancers of different origins. Based on our analysis, we suggest a standardized in vitro experimental protocol for 5-ALA PDT.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jung Joon Lee ◽  
Srinivas Gandla ◽  
Byeongjae Lim ◽  
Sunju Kang ◽  
Sunyoung Kim ◽  
...  

Abstract Conformal and ultrathin coating of highly conductive PEDOT:PSS on hydrophobic uneven surfaces is essential for resistive-based pressure sensor applications. For this purpose, a water-based poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) solution was successfully exchanged to an organic solvent-based PEDOT:PSS solution without any aggregation or reduction in conductivity using the ultrafiltration method. Among various solvents, the ethanol (EtOH) solvent-exchanged PEDOT:PSS solution exhibited a contact angle of 34.67°, which is much lower than the value of 96.94° for the water-based PEDOT:PSS solution. The optimized EtOH-based PEDOT:PSS solution exhibited conformal and uniform coating, with ultrathin nanocoated films obtained on a hydrophobic pyramid polydimethylsiloxane (PDMS) surface. The fabricated pressure sensor showed high performances, such as high sensitivity (−21 kPa−1 in the low pressure regime up to 100 Pa), mechanical stability (over 10,000 cycles without any failure or cracks) and a fast response time (90 ms). Finally, the proposed pressure sensor was successfully demonstrated as a human blood pulse rate sensor and a spatial pressure sensor array for practical applications. The solvent exchange process using ultrafiltration for these applications can be utilized as a universal technique for improving the coating property (wettability) of conducting polymers as well as various other materials.


2011 ◽  
Vol 21 (24) ◽  
pp. 4633-4639 ◽  
Author(s):  
Jeonghun Kim ◽  
Jong Kwan Koh ◽  
Byeonggwan Kim ◽  
Sung Hoon Ahn ◽  
Hyungju Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document