Slender Body Theory for Three-Dimensional Boundary-Layer Induced Potential Flows

1973 ◽  
Author(s):  
Stanley G. Rubin ◽  
Frank J. Mummolo
1974 ◽  
Vol 66 (1) ◽  
pp. 145-157 ◽  
Author(s):  
Stanley G. Rubin ◽  
Frank J. Mummolo

The application of slender-body theory to the evaluation of the three-dimensional surface velocities induced by a boundary layer on an elliptic cylinder is considered. The method is applicable when the Reynolds number is sufficiently large so that the thin-boundary-layer approximation is valid. The resulting potential problem is reduced to a two-dimensional consideration of the flow over an expanding cylinder with porous boundary conditions. The limiting solutions for a flat plate of finite span and a nearly circular cross-section are obtained in a simple analytic form. In the former case, within the limitations of slender-body theory, the results are in exact agreement with the complete three-dimensional solution for this geometry.


1962 ◽  
Vol 13 (1) ◽  
pp. 1-16
Author(s):  
J. C. Cooke

SummaryA three-dimensional laminar-boundary-layer calculation is carried out over the area concerned. The external flow is simplified, being calculated by slender-body theory assuming conical flow, with two point vortices above the wing, their positions and strength being determined by experiment. Attempts are made to draw transition fronts both for two-dimensional and sweep instability from this calculation. The combination of these gives fronts similar to those observed in some experiments. Because there is little or no pressure gradient over the area in question it is suggested that it is a region where distributed suction might usefully be applied in order to maintain laminar flow and reduce drag.


2005 ◽  
Vol 49 (03) ◽  
pp. 191-206
Author(s):  
Hajime Kihara ◽  
Shigeru Naito ◽  
Makoto Sueyoshi

A nonlinear numerical method is presented for the prediction of the hydrodynamic forces that act on an oscillating ship with a forward speed in head waves. A "parabolic" approximation of equations called "2.5D" or "2D+T" theory was used in a three-dimensional ship wave problem, and the computation was carried out in the time domain. The nonlinear properties associated with the hydrostatic, hydrodynamic, and Froude-Krylov forces were taken into account in the framework of the slender body theory. This work is an extension of the previous work of Kihara and Naito (1998). The application of this approach to the unsteady wave-making problem of a ship with a real hull form is described. The focus is on the influence of the above-water hull form on the horizontal mean wave force. Comparison with experimental results demonstrates that the method is valid in predicting added resistance. Prediction of added resistance for blunt ships is also shown by example.


1980 ◽  
Vol 31 (1) ◽  
pp. 1-25
Author(s):  
K.D. Thomson

SummaryThe aim of this paper is to present a method for predicting the aerodynamic characteristics of slender bodies of revolution at small incidence, under flow conditions such that the boundary layer is turbulent. Firstly a panel method based on slender body theory is developed and used to calculate the surface velocity distribution on the body at zero incidence. Secondly this velocity distribution is used in conjunction with an existing boundary layer estimation method to calculate the growth of boundary layer displacement thickness which is added to the body to produce the effective aerodynamic profile. Finally, recourse is again made to slender body theory to calculate the normal force curve slope and centre of pressure position of the effective aerodynamic profile. Comparisons made between predictions and experiment for a number of slender bodies extending from highly boattailed configurations to ogive-cylinders, and covering a large range of boundary layer growth rates, indicate that the method is useful for missile design purposes.


1991 ◽  
Vol 35 (03) ◽  
pp. 183-190
Author(s):  
C. H. Lee ◽  
J. N. Newman

Computations are presented for the linearized force and moment acting on a submerged slender spheroid in regular waves, the resulting pitch and heave motions, and the second-order mean force and moment. These numerical results, which are based on the use of a three-dimensional panel code, are compared with the approximations based on slender-body theory. The accuracy of the slender-body approximation is relatively good for the first-order forces and body motions, but substantial errors are revealed for the second-order mean drift force and pitch moment. Unlike the approximate result, the more correct numerical prediction of the mean pitch moment is non-zero, and generally acts in the bow down direction in head seas. To explain this result it is shown that the wave elevation directly above the spheroid increases in amplitude from bow to stern, thus causing a greater upward force on the afterbody relative to the forebody.


1960 ◽  
Vol 9 (2) ◽  
pp. 305-317 ◽  
Author(s):  
M. J. Lighthill

The paper seeks to determine what transverse oscillatory movements a slender fish can make which will give it a high Froude propulsive efficiency, $\frac{\hbox{(forward velocity)} \times \hbox{(thrust available to overcome frictional drag)}} {\hbox {(work done to produce both thrust and vortex wake)}}.$ The recommended procedure is for the fish to pass a wave down its body at a speed of around $\frac {5} {4}$ of the desired swimming speed, the amplitude increasing from zero over the front portion to a maximum at the tail, whose span should exceed a certain critical value, and the waveform including both a positive and a negative phase so that angular recoil is minimized. The Appendix gives a review of slender-body theory for deformable bodies.


Sign in / Sign up

Export Citation Format

Share Document