Rubble-Mound Breakwater Wave-Attenuation and Stability Test, Burns Waterway Harbor, Indiana

1993 ◽  
Author(s):  
Robert D. Carver ◽  
Willie G. Dubose ◽  
Brenda J. Wright
Author(s):  
Peter Troch ◽  
Marc de Somer ◽  
Julien de Rouck ◽  
Luc van Damme ◽  
Dierik Vermeir ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Peihong Zhao ◽  
Dapeng Sun ◽  
Hao Wu

A Jarlan-type perforated caisson consisted of a perforated front wall, a solid rear wall, and a wave-absorbing chamber between them. The wave-absorbing chamber was the main feature of the perforated caisson, and its width had a great effect on wave attenuation performance. In this study, a larger range of the wave-absorbing chamber width was observed in model experiments to investigate the effect on wave attenuation performance including the reflection coefficients and the horizontal wave forces of a perforated caisson sitting on a rubble-mound foundation. A resistance-type porosity numerical model based on the volume-averaged Reynolds-averaged Navier–Stokes (VARANS) equations was validated by comparing the present results with those of previously reported and present experiments. The validated numerical model was then used for extended research. It was found that the reflection coefficients, the total horizontal wave force, and its components all tended to oscillate in a decrease ⟶ increase ⟶ decrease manner with increasing the wave-absorbing chamber width. The reflection coefficients and wave forces acting on both sides of the perforated front wall were found to be synchronized regardless of perforation ratio or the rubble-mound foundation height.


1983 ◽  
Vol 44 (C9) ◽  
pp. C9-337-C9-340 ◽  
Author(s):  
R. L. Smith ◽  
W. N. Reynolds ◽  
S. Perring

1984 ◽  
Vol 45 (C1) ◽  
pp. C1-131-C1-134 ◽  
Author(s):  
M. Nishi ◽  
T. Ando ◽  
T. Hiyama ◽  
H. Tsuji ◽  
Y. Takahashi ◽  
...  
Keyword(s):  

2020 ◽  
pp. 34-42
Author(s):  
Thibault Chastel ◽  
Kevin Botten ◽  
Nathalie Durand ◽  
Nicole Goutal

Seagrass meadows are essential for protection of coastal erosion by damping wave and stabilizing the seabed. Seagrass are considered as a source of water resistance which modifies strongly the wave dynamics. As a part of EDF R & D seagrass restoration project in the Berre lagoon, we quantify the wave attenuation due to artificial vegetation distributed in a flume. Experiments have been conducted at Saint-Venant Hydraulics Laboratory wave flume (Chatou, France). We measure the wave damping with 13 resistive waves gauges along a distance L = 22.5 m for the “low” density and L = 12.15 m for the “high” density of vegetation mimics. A JONSWAP spectrum is used for the generation of irregular waves with significant wave height Hs ranging from 0.10 to 0.23 m and peak period Tp ranging from 1 to 3 s. Artificial vegetation is a model of Posidonia oceanica seagrass species represented by slightly flexible polypropylene shoots with 8 artificial leaves of 0.28 and 0.16 m height. Different hydrodynamics conditions (Hs, Tp, water depth hw) and geometrical parameters (submergence ratio α, shoot density N) have been tested to see their influence on wave attenuation. For a high submergence ratio (typically 0.7), the wave attenuation can reach 67% of the incident wave height whereas for a low submergence ratio (< 0.2) the wave attenuation is negligible. From each experiment, a bulk drag coefficient has been extracted following the energy dissipation model for irregular non-breaking waves developed by Mendez and Losada (2004). This model, based on the assumption that the energy loss over the species meadow is essentially due to the drag force, takes into account both wave and vegetation parameter. Finally, we found an empirical relationship for Cd depending on 2 dimensionless parameters: the Reynolds and Keulegan-Carpenter numbers. These relationships are compared with other similar studies.


Sign in / Sign up

Export Citation Format

Share Document