An Evaluation of Selected Virtual Temperature Data Acquired at the APRF in 1994.

1995 ◽  
Author(s):  
Glenn B. Hoidale ◽  
Wayne L. Flowers ◽  
Linda Parker-Sedillo
2007 ◽  
Author(s):  
David Anthony Hutchinson ◽  
Najiya Kuramshina ◽  
Ali Chingiz Oglu Sheydayev ◽  
Simon N.J. Day

2017 ◽  
Author(s):  
Barrett Flynn ◽  
◽  
Jefferson Hungerford ◽  
Jefferson Hungerford ◽  
Stanley Mordensky ◽  
...  

Data in Brief ◽  
2021 ◽  
Vol 36 ◽  
pp. 107027
Author(s):  
Anna Papazoglou ◽  
Muhammad Imran Arshaad ◽  
Magdalena Elisabeth Siwek ◽  
Christina Henseler ◽  
Johanna Daubner ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 640
Author(s):  
Sadroddin Alavipanah ◽  
Dagmar Haase ◽  
Mohsen Makki ◽  
Mir Muhammad Nizamani ◽  
Salman Qureshi

The changing climate has introduced new and unique challenges and threats to humans and their environment. Urban dwellers in particular have suffered from increased levels of heat stress, and the situation is predicted to continue to worsen in the future. Attention toward urban climate change adaptation has increased more than ever before, but previous studies have focused on indoor and outdoor temperature patterns separately. The objective of this research is to assess the indoor and outdoor temperature patterns of different urban settlements. Remote sensing data, together with air temperature data collected with temperature data loggers, were used to analyze land surface temperature (outdoor temperature) and air temperature (indoor temperature). A hot and cold spot analysis was performed to identify the statistically significant clusters of high and low temperature data. The results showed a distinct temperature pattern across different residential units. Districts with dense urban settlements show a warmer outdoor temperature than do more sparsely developed districts. Dense urban settlements show cooler indoor temperatures during the day and night, while newly built districts show cooler outdoor temperatures during the warm season. Understanding indoor and outdoor temperature patterns simultaneously could help to better identify districts that are vulnerable to heat stress in each city. Recognizing vulnerable districts could minimize the impact of heat stress on inhabitants.


2020 ◽  
Vol 6 (1) ◽  
pp. 50-62
Author(s):  
Syed Mustafizur Rahman ◽  
Syed Mahbubur Rahman ◽  
Md. Shuzon Ali ◽  
Md. Abdullah Al Mamun ◽  
Md. Nezam Uddin

Abstract Seasons are the divisions of the year into months or days according to the changes in weather, ecology and the intensity of sunlight in a given region. The temperature cycle plays a major role in defining the meteorological seasons of the year. This study aims at investigating seasonal boundaries applying harmonic analysis in daily temperature for the duration of 30 years, recorded at six stations from 1988 to 2017, in northwest part of Bangladesh. Year by year harmonic analyses of daily temperature data in each station have been carried out to observe temporal and spatial variations in seasonal lengths. Periodic nature of daily temperature has been investigated employing spectral analysis, and it has been found that the estimated periodicities have higher power densities of the frequencies at 0.0027 and 0.0053 cycles/day. Some other minor periodic natures have also been observed in the analyses. Using the frequencies between 0.0027 to 0.0278 cycles/day, the observed periodicities in spectral analysis, harmonic analyses of minimum and maximum temperatures have found four seasonal boundaries every year in each of the stations. The estimated seasonal boundaries for the region fall between 19-25 February, 19-23 May, 18-20 August and 17-22 November. Since seasonal variability results in imbalance in water, moisture and heat, it has the potential to significantly affect agricultural production. Hence, the seasons and seasonal lengths presented in this research may help the concerned authorities take measures to reduce the risks for crop productivity to face the challenges arise from changing climate. Moreover, the results obtained are likely to contribute in introducing local climate calendar.


Sign in / Sign up

Export Citation Format

Share Document