scholarly journals Estimation of seasonal boundaries using temperature data: a case of northwest part of Bangladesh

2020 ◽  
Vol 6 (1) ◽  
pp. 50-62
Author(s):  
Syed Mustafizur Rahman ◽  
Syed Mahbubur Rahman ◽  
Md. Shuzon Ali ◽  
Md. Abdullah Al Mamun ◽  
Md. Nezam Uddin

Abstract Seasons are the divisions of the year into months or days according to the changes in weather, ecology and the intensity of sunlight in a given region. The temperature cycle plays a major role in defining the meteorological seasons of the year. This study aims at investigating seasonal boundaries applying harmonic analysis in daily temperature for the duration of 30 years, recorded at six stations from 1988 to 2017, in northwest part of Bangladesh. Year by year harmonic analyses of daily temperature data in each station have been carried out to observe temporal and spatial variations in seasonal lengths. Periodic nature of daily temperature has been investigated employing spectral analysis, and it has been found that the estimated periodicities have higher power densities of the frequencies at 0.0027 and 0.0053 cycles/day. Some other minor periodic natures have also been observed in the analyses. Using the frequencies between 0.0027 to 0.0278 cycles/day, the observed periodicities in spectral analysis, harmonic analyses of minimum and maximum temperatures have found four seasonal boundaries every year in each of the stations. The estimated seasonal boundaries for the region fall between 19-25 February, 19-23 May, 18-20 August and 17-22 November. Since seasonal variability results in imbalance in water, moisture and heat, it has the potential to significantly affect agricultural production. Hence, the seasons and seasonal lengths presented in this research may help the concerned authorities take measures to reduce the risks for crop productivity to face the challenges arise from changing climate. Moreover, the results obtained are likely to contribute in introducing local climate calendar.

2021 ◽  
Vol 3 (1) ◽  
pp. 38-48
Author(s):  
Nancy Chemutai Koech ◽  
Sammy C. Letema ◽  
James Kibii Koske

Climate variability is a global phenomenon that is posing a threat to the infrastructure and agricultural sector. Intense precipitation often results in the deterioration of rural road infrastructure resulting in inaccessibility. Rainfall and temperature data from 1989 to 2019 was obtained from Kenya Meteorological Department. Data on Greenleaf and cost of repairs and maintenances are from selected tea factories managed by Kenya Tea Development Agency. Data on perception is based on a questionnaire survey of 398 randomly selected tea farmers. Results show that climate variability is experienced in Kericho (p < 0.005). There is a varsity variation in mean maximum temperatures F(0.05, 29) ꞊ 5.564 (p ꞊ 0.009) and mean minimum temperature F(29) =8.503 (p ꞊  0.000). However, the linear regression analysis shows that rainfall has decreased (y ꞊ 2.5476x - 40.778) while the temperature has increased (y ꞊ 0.028x - 0.4473). There is a significant positive correlation between the amount of rainfall and cost of repairs and maintenances for five factories (r ꞊ 0.122, r = 0.046, r = 0.029, r = 0.255) except one (r = -.261, p ꞊ .466). Therefore, the climate has significantly varied from 1989-2019 and heavy rains occur periodically that damage rural tea roads, thus impacting negatively on tea transportation. There is a need, therefore, for heavy investment of emergency funds for repair and maintenance of rural tea roads based on rainfall variability and heavy rain return period pattern.


2015 ◽  
Vol 7 (2) ◽  
pp. 73-77 ◽  
Author(s):  
MN Uddin ◽  
MSA Mondal ◽  
NMR Nasher

The analysis of annual mean maximum and annual mean minimum temperature data are studied in GIS environment, obtained from 34 meteorological stations scattered throughout the Bangladesh from 1948 to 2013. IDW method was used for the spatial distribution of temperature over the study area, using ArcGIS 10.2 software. Possible trends in the spatially distributed temperature data were examined, using the non-parametric Mann-Kendall method with statistical significance, and the magnitudes of available trends were determined using Sen’s method in ArcMap depiction. The findings of the study show positive trends in annual mean maximum temperatures with 90%, 95%, 99% and 99.9% significance levels.DOI: http://dx.doi.org/10.3329/jesnr.v7i2.22210 J. Environ. Sci. & Natural Resources, 7(2): 73-77 2014


2008 ◽  
Vol 26 (8) ◽  
pp. 2143-2157 ◽  
Author(s):  
H. G. Mayr ◽  
J. G. Mengel ◽  
F. T. Huang ◽  
E. R. Talaat ◽  
E. R. Nash ◽  
...  

Abstract. An analysis of the National Centers for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) data is presented to provide a more complete description of the stratospheric 5-year semi-decadal (SD) oscillation (Mayr et al., 2007). The zonal-mean temperature and zonal wind data from the Atmospheric Research R-1 analysis are employed, covering the years from 1962 to 2002 in the altitude range from 10 to 30 km. For diagnostic purposes, the data are separated into the hemispherically symmetric and anti-symmetric components, and spectral analysis is applied to identify the signatures of the SD oscillations. Through the synthesis or filtering of spectral features, the SD modulations of the annual oscillation (AO) and quasi-biennial oscillation (QBO) are delineated. In agreement with the earlier findings, the magnitude of the SD oscillation is more pronounced when the 30-month QBO dominates during the years from 1975 to 1995. This is consistent with results from a numerical model, which shows that such a QBO generates the SD oscillation through interaction with the 12-month AO. In the zonal winds, the SD oscillation in the NCEP data is confined to equatorial latitudes, where it modulates the symmetric AO and QBO by about 5 m/s below 30 km. In the temperature data, the effect is also seen around the equator, but it is much larger at polar latitudes where the SD oscillation produces variations as large as 2 K. Our data analysis indicates that the SD oscillation is mainly hemispherically symmetric, and it appears to originate at equatorial latitudes where most of the energy resides.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Dong Yoon Kim ◽  
Hyeseong Hwang ◽  
Jae-Hyung Kim ◽  
Byung Gil Moon ◽  
Sung Min Hyung ◽  
...  

Rhegmatogenous retinal detachment (RRD) frequency was observed to be higher with an increase in the daily temperature range. This showed that a wide daily range of temperature, rather than the absolute value of the temperature, is associated with the occurrence of RRD. Purpose. To investigate the association between the frequency of rhegmatogenous retinal detachment (RRD) and the atmospheric temperature. Method. A retrospective review of consecutive eyes that had undergone primary RRD surgery from 1996 to 2016 at Chungbuk National University Hospital was conducted. Temperature data (highest, lowest, and mean daily temperatures and daily temperature range) in Chungbuk Province were obtained from the Korean Meteorological Administration database. We investigated the relationship between the daily temperature range and the frequency of RRD surgery. We also analyzed the association between various temperature data and the frequency of RRD surgery. Result. There were 1,394 RRD surgeries from 1996 to 2016. Among them, 974 eyes were included in this study. The monthly average number of RRD operations showed a bimodal peak (in April and October) throughout the year. With the same tendency as the frequency of RRD, the monthly average of the daily temperature range over 1 year also showed a bimodal peak in April and October. There was a significant positive correlation between the monthly average of the daily temperature range and the number of RRD surgeries (r = 0.297, P<0.001). However, there were no associations between RRD frequency and the mean temperature, highest temperature, and lowest temperature. Conclusion. The higher the daily temperature range, the higher was the RRD frequency observed. We speculated that dynamic changes in temperature during the day may affect degrees in chorioretinal adhesion and liquefaction of the vitreous, which may eventually result in retinal detachment. Therefore, further experimental studies on the correlation between temperature changes and retinal detachment are needed.


2013 ◽  
Vol 22 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Amanda R. Smith ◽  
Ashley Nowak ◽  
Patrick Wagner ◽  
Rebekah Yates ◽  
Elise Janci ◽  
...  

2018 ◽  
Vol 10 (4) ◽  
pp. 2097-2114 ◽  
Author(s):  
Lu Gao ◽  
Jianhui Wei ◽  
Lingxiao Wang ◽  
Matthias Bernhardt ◽  
Karsten Schulz ◽  
...  

Abstract. The Chinese Tian Shan (also known as the Chinese Tianshan Mountains, CTM) have a complex ecological environmental system. They not only have a large number of desert oases but also support many glaciers. The arid climate and the shortage of water resources are the important factors restricting the area's socioeconomic development. This study presents a unique high-resolution (1 km, 6-hourly) air temperature data set for the Chinese Tian Shan (41.1814–45.9945∘ N, 77.3484–96.9989∘ E) from 1979 to 2016 based on a robust elevation correction framework. The data set was validated by 24 meteorological stations at a daily scale. Compared to original ERA-Interim temperature, the Nash–Sutcliffe efficiency coefficient increased from 0.90 to 0.94 for all test sites. Approximately 24 % of the root-mean-square error was reduced from 3.75 to 2.85 ∘C. A skill score based on the probability density function, which was used to validate the reliability of the new data set for capturing the distributions, improved from 0.86 to 0.91 for all test sites. The data set was able to capture the warming trends compared to observations at annual and seasonal scales, except for winter. We concluded that the new high-resolution data set is generally reliable for climate change investigation over the Chinese Tian Shan. However, the new data set is expected to be further validated based on more observations. This data set will be helpful for potential users to improve local climate monitoring, modeling, and environmental studies in the Chinese Tian Shan. The data set presented in this article is published in the Network Common Data Form (NetCDF) at https://doi.org/10.1594/PANGAEA.887700. The data set includes 288 nc files and one user guidance txt file.


Sign in / Sign up

Export Citation Format

Share Document