An Infrared Study Using a Scaled Model.

1995 ◽  
Author(s):  
Lou Massa ◽  
Peter O. Cervenka
Keyword(s):  
1995 ◽  
Author(s):  
Lou Massa ◽  
Peter O. Cervenka
Keyword(s):  

2002 ◽  
Vol 4 ◽  
pp. 333-333
Author(s):  
S. K. Ghosh ◽  
D. K. Ojha ◽  
R. P. Verma

2005 ◽  
Vol 30 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Abdelaziz Sahibed-Dine ◽  
Mhamed Sadiq ◽  
Naima Aderdour ◽  
Mohamed Bensitel
Keyword(s):  

2018 ◽  
Vol 77 (4) ◽  
pp. 222-229 ◽  
Author(s):  
A. V. Paranin ◽  
A. B. Batrashov

The article compares the results of calculation of the finite element simulation of current and temperature distribution in the scale model of the DC catenary with the data of laboratory tests. Researches were carried on various versions of the structural design of catenary model, reflecting the topological features of the wire connection, characteristic of the DC contact network. The proportions of the cross-sectional area of the scaled model wires are comparable to each other with the corresponding values for real DC catenary. The article deals with the operating conditions of the catenary model in the modes of transit and current collection. When studying the operation of the scale catenary model in the transit mode, the effect of the structural elements on the current distribution and heating of the wires was obtained. Within the framework of the scale model, theoretical assumptions about the current overload of the supporting cable near the middle anchoring have been confirmed. In the current collection mode, the experimental dependences of the current in the transverse wires of the scale model are obtained from the coordinate of the current collection point. Using the model it was experimentally confirmed that in the section of the contact wire with local wear, not only the temperature rise occurs but also the current redistribution due to the smaller cross section. Thus, the current share in other longitudinal wires of the scale model increases and their temperature rises. Scale and mathematical models are constructed with allowance for laboratory clamps and supporting elements that participate in the removal of heat from the investigated wires. Obtained study results of the scale model allow to draw a conclusion about the adequacy of the mathematical model and its correspondence to the real physical process. These conclusions indicate the possibility of applying mathematical model for calculating real catenary, taking into account the uneven contact wear wire and the armature of the contact network.


1972 ◽  
Vol 37 (6) ◽  
pp. 1975-1977 ◽  
Author(s):  
L. Kubelková ◽  
P. Jírů
Keyword(s):  

1987 ◽  
Vol 52 (5) ◽  
pp. 1356-1361
Author(s):  
S. Abdel Rahman ◽  
M. Elsafty ◽  
A. Hattaba

The conformation of elastin-like peptides Boc-Ala-Pro-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM, Boc-Ala-Pro-Gly-Val-Gly-Val-Ala-Pro-Gly-Val-Gly-Val-APEGM were examined in solution using circular dichroism at 30 °C, 50 °C, and 70 °C and in solid state by IR at room temperature. The studies show that the β-turn is a significant conformational feature for peptides under investigation in solution at 30 °C and 50 °C, but at 70 °C the tetra, hexa, and decapeptides show the CD feature characteristic of the β-structure while the dodecapeptide spectra show the presence of β-turn which indicates the stability of the β-turn at this chain length. The IR spectra show that in the solid state at room temperature all investigated peptides assume essentially a β-turn except the tetrapeptide which present evidence of antiparallel β-structure. The β-turn contribution in the IR spectra increases with the increase of the chain length of the peptide.


1998 ◽  
Vol 509 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Eric M. Howard ◽  
Judith L. Pipher ◽  
William J. Forrest
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document