Time Dependence of Visual Deprivation: A Comparison between Models of Plasticity and Experimental Results.

1996 ◽  
Author(s):  
Brian Blais ◽  
Harel Shouval ◽  
Leon N. Cooper
Author(s):  
F. Alisafaei ◽  
Seyed Hamid Reza Sanei ◽  
E. J. Smith ◽  
Chung-Souk Han

Nanoindentation tests at the nano-micrometer scales are conducted to investigate the depth and time dependent deformation mechanisms of polydimethylsiloxane (PDMS). Astonishing indentation size effects observed in these experiments are analyzed with an existing theoretical hardness model, and the effects of loading time on the hardness and indentation stiffness of PDMS are studied. The change in the indentation recovery with respect to indentation depth and loading time are analyzed. Furthermore, it is shown that the stiffness of PDMS obtained at the maximum applied force can be efficiently applied to validate the applied theoretical hardness model with the experimental results.


2016 ◽  
Vol 56 (2) ◽  
pp. 106-111
Author(s):  
Vít Jeníček ◽  
Linda Diblíková

<p>A mathematical model of galvanic corrosion under the conditions of a thin electrolyte film was used to evaluate atmospheric corrosion. Experimentally determined weight loss values were used to validate the modelled results. The time dependence of the corrosion degradation was included in the model using polarization curves of the corroded materials. The difference between the modelled results and the experimental results was 20%, taking the experimental error into account.</p>


1994 ◽  
Vol 116 (4) ◽  
pp. 317-319 ◽  
Author(s):  
B. D. Harper ◽  
J. M. Rao

Absorbed moisture is generally thought to have a plasticizing effect upon the mechanical behavior of polymers. This paper presents some experimental results illustrating the effects of water immersion upon the room temperature creep and stress-strain behavior of a polyimide film. It is shown that immersion in water results in antiplasticization as demonstrated by a significant increase in stiffness and decrease in time dependence. These effects were found to be reversible following thermal conditioning at 300°C.


1999 ◽  
Vol 173 ◽  
pp. 185-188
Author(s):  
Gy. Szabó ◽  
K. Sárneczky ◽  
L.L. Kiss

AbstractA widely used tool in studying quasi-monoperiodic processes is the O–C diagram. This paper deals with the application of this diagram in minor planet studies. The main difference between our approach and the classical O–C diagram is that we transform the epoch (=time) dependence into the geocentric longitude domain. We outline a rotation modelling using this modified O–C and illustrate the abilities with detailed error analysis. The primary assumption, that the monotonity and the shape of this diagram is (almost) independent of the geometry of the asteroids is discussed and tested. The monotonity enables an unambiguous distinction between the prograde and retrograde rotation, thus the four-fold (or in some cases the two-fold) ambiguities can be avoided. This turned out to be the main advantage of the O–C examination. As an extension to the theoretical work, we present some preliminary results on 1727 Mette based on new CCD observations.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


Author(s):  
Y. Harada ◽  
T. Goto ◽  
H. Koike ◽  
T. Someya

Since phase contrasts of STEM images, that is, Fresnel diffraction fringes or lattice images, manifest themselves in field emission scanning microscopy, the mechanism for image formation in the STEM mode has been investigated and compared with that in CTEM mode, resulting in the theory of reciprocity. It reveals that contrast in STEM images exhibits the same properties as contrast in CTEM images. However, it appears that the validity of the reciprocity theory, especially on the details of phase contrast, has not yet been fully proven by the experiments. In this work, we shall investigate the phase contrast images obtained in both the STEM and CTEM modes of a field emission microscope (100kV), and evaluate the validity of the reciprocity theory by comparing the experimental results.


Author(s):  
A. Ourmazd ◽  
G.R. Booker ◽  
C.J. Humphreys

A (111) phosphorus-doped Si specimen, thinned to give a TEM foil of thickness ∼ 150nm, contained a dislocation network lying on the (111) plane. The dislocation lines were along the three <211> directions and their total Burgers vectors,ḇt, were of the type , each dislocation being of edge character. TEM examination under proper weak-beam conditions seemed initially to show the standard contrast behaviour for such dislocations, indicating some dislocation segments were undissociated (contrast A), while other segments were dissociated to give two Shockley partials separated by approximately 6nm (contrast B) . A more detailed examination, however, revealed that some segments exhibited a third and anomalous contrast behaviour (contrast C), interpreted here as being due to a new dissociation not previously reported. Experimental results obtained for a dislocation along [211] with for the six <220> type reflections using (g,5g) weak-beam conditions are summarised in the table below, together with the relevant values.


Author(s):  
Scott Lordi

Vicinal Si (001) surfaces are interesting because they are good substrates for the growth of III-V semiconductors. Spots in RHEED patterns from vicinal surfaces are split due to scattering from ordered step arrays and this splitting can be used to determine the misorientation angle, using kinematic arguments. Kinematic theory is generally regarded to be inadequate for the calculation of RHEED intensities; however, only a few dynamical RHEED simulations have been attempted for vicinal surfaces. The multislice formulation of Cowley and Moodie with a recently developed edge patching method was used to calculate RHEED patterns from vicinal Si (001) surfaces. The calculated patterns are qualitatively similar to published experimental results and the positions of the split spots quantitatively agree with kinematic calculations.RHEED patterns were calculated for unreconstructed (bulk terminated) Si (001) surfaces misoriented towards [110] ,with an energy of 15 keV, at an incident angle of 36.63 mrad ([004] bragg condition), and a beam azimuth of [110] (perpendicular to the step edges) and the incident beam pointed down the step staircase.


Sign in / Sign up

Export Citation Format

Share Document