A Gas Pressure Sintering Furnace for Structural Ceramics

2001 ◽  
Author(s):  
I-Wei Chen
2008 ◽  
Vol 403 ◽  
pp. 107-108 ◽  
Author(s):  
Nurcan Calis Acikbas ◽  
Ferhat Kara ◽  
Hasan Mandal

- SiAlON ceramics were produced from different starting Si3N4 powders including β-Si3N4 and α-Si3N4 powders and mixtures of these powders. Gas pressure sintering was used for sintering. After sintering, resultant fracture toughness values were correlated with microstructure and starting powders. By optimizing chemistry and process parameters; - SiAlON ceramics with reasonable fracture toughness can be produced from rather coarse β-Si3N4 powder. This could improve the economic viability of SiAlON ceramics since -Si3N4 powders are less costly.


2015 ◽  
Vol 26 (6) ◽  
pp. 3805-3812 ◽  
Author(s):  
Chunlei Zhao ◽  
Qian Ma ◽  
Ronghui Liu ◽  
Huibing Xu ◽  
Hongqi Ye ◽  
...  

1988 ◽  
Vol 23 (9) ◽  
pp. 3413-3419 ◽  
Author(s):  
M. Mitomo ◽  
N. Yang ◽  
Y. Kishi ◽  
Y. Bando

2021 ◽  
Author(s):  
Yuelong Wang ◽  
Xingyu Li ◽  
Haoyang Wu ◽  
Baorui Jia ◽  
Deyin Zhang ◽  
...  

Abstract Si3N4-based ceramic (Si3N4-5wt%Y2O3-3wt%MgO) was obtained from carbothermal-reduction-derived powder combined with gas pressure sintering. The phase, microstructure, thermal conductivity and mechanical properties of Si3N4 ceramics were comprehensively analyzed. Dense Si3N4 ceramic with uniform grain size was obtained after sintering at 1900°C for 7 h under a N2 pressure of 1.2 MPa. The secondary phase consisted of Y4Si2O7N2 and Y2Si3O3N4 was found to gather around triangular grain boundaries. The thermal conductivity, flexural strength, hardness and fracture toughness of the Si3N4 ceramics were 95.7 W·m-1·k-1, 715 MPa, 17.2 GPa and 7.2 MPa·m1/2, respectively. The results were compared with product derived from commercial powder, the improvement of thermal conductivity (~8.3%) and fracture toughness (~4.3%) demonstrating the superiority of Si3N4 ceramics prepared from carbothermal-reduction-derived powder.


2014 ◽  
Vol 997 ◽  
pp. 454-456
Author(s):  
Yun Long Zhang ◽  
Yu Min Zhang ◽  
Ming Hu ◽  
Xiao Gang Song

The SiC-B4C multi-phase ceramics was fabricated by gas-pressure sintering technology. The rare-earth oxide Al2O3combined with Er2O3/SiO2was served as sintering aids. The results were shown that the combination of Al2O3/Er2O3/SiO2sintering additives were effective for densification of SiC-B4C multi-phase ceramics. The influence of B4C content on the phase constitution, microstructure and densification behavior of the SiC-B4C multi-phase ceramics were detailed. The lose weight and volume shrinkage rate of SiC-B4C multi-phase ceramics had similar evolvement trend when B4C content increased. Keywords: Gas-Pressure Sintering, SiC-B4C multi-phase ceramics, densification behavior.


2014 ◽  
pp. 171-187
Author(s):  
Michael J. Hoffmann ◽  
Stefan Fünfschilling ◽  
Deniz Kahraman

Sign in / Sign up

Export Citation Format

Share Document