Thermal Conductivity of Si₃N₄ Ceramics Fabricated From Carbothermal-reduction-derived Powder

Author(s):  
Yuelong Wang ◽  
Xingyu Li ◽  
Haoyang Wu ◽  
Baorui Jia ◽  
Deyin Zhang ◽  
...  

Abstract Si3N4-based ceramic (Si3N4-5wt%Y2O3-3wt%MgO) was obtained from carbothermal-reduction-derived powder combined with gas pressure sintering. The phase, microstructure, thermal conductivity and mechanical properties of Si3N4 ceramics were comprehensively analyzed. Dense Si3N4 ceramic with uniform grain size was obtained after sintering at 1900°C for 7 h under a N2 pressure of 1.2 MPa. The secondary phase consisted of Y4Si2O7N2 and Y2Si3O3N4 was found to gather around triangular grain boundaries. The thermal conductivity, flexural strength, hardness and fracture toughness of the Si3N4 ceramics were 95.7 W·m-1·k-1, 715 MPa, 17.2 GPa and 7.2 MPa·m1/2, respectively. The results were compared with product derived from commercial powder, the improvement of thermal conductivity (~8.3%) and fracture toughness (~4.3%) demonstrating the superiority of Si3N4 ceramics prepared from carbothermal-reduction-derived powder.

Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 334
Author(s):  
Aidong Xia ◽  
Jie Yin ◽  
Xiao Chen ◽  
Zhengren Huang ◽  
Xuejian Liu ◽  
...  

In this work, a (SiC-AlN)/ZrB2 composite with outstanding mechanical properties was prepared by using polymer-derived ceramics (PDCs) and hot-pressing technique. Flexural strength reached up to 460 ± 41 MPa, while AlN and ZrB2 contents were 10 wt%, and 15 wt%, respectively, under a hot-pressing temperature of 2000 °C. XRD pattern-evidenced SiC generated by pyrolysis of polycarbosilane (PCS) was mainly composed by 2H-SiC and 4H-SiC, both belonging to α-SiC. Micron-level ZrB2 secondary phase was observed inside the (SiC-AlN)/ZrB2 composite, while the mean grain size (MGS) of SiC-AlN matrix was approximately 97 nm. This unique nano-micron hybrid microstructure enhanced the mechanical properties. The present investigation provided a feasible tactic for strengthening ceramics from PDCs raw materials.


2004 ◽  
Vol 19 (11) ◽  
pp. 3270-3278 ◽  
Author(s):  
Xinwen Zhu ◽  
Hiroyuki Hayashi ◽  
You Zhou ◽  
Kiyoshi Hirao

Dense β–Si3N4 ceramics were fabricated from α–Si3N4 raw powder by gas-pressure sintering at 1900 °C for 12 h under a nitrogen pressure of 1 MPa, using four different kinds of additive compositions: Yb2O3–MgO, Yb2O3–MgSiN2, Y2O3–MgO, and Y2O3–MgSiN2. The effects of additive composition on the microstructure and thermal and mechanical properties of β–Si3N4 ceramics were investigated. It was found that the replacement of Yb2O3 by Y2O3 has no significant effect on the thermal conductivity and fracture toughness, but the replacement of MgO by MgSiN2 leads to an increase in thermal conductivity from 97 to 113 Wm-1K-1and fracture toughness from 8 to 10 MPa m1/2, respectively. The enhanced thermal conductivity of the MgSiN2-doped materials is attributed to the purification of β–Si3N4 grain and increase of Si3N4–Si3N4 contiguity, resulting from the enhanced growth of large elongated grains. The improved fracture toughness of the MgSiN2-doped materials is attributed to the increase of grain size and fraction of large elongated grains. However, the same thermal conductivity between the Yb2O3- and Y2O3-doped materials is related to not only their similar microstructures, but also the similar abilities of removing oxygen impurity in Si3N4 lattice between Yb2O3 and Y2O3. The same fracture toughness between the Yb2O3- and Y2O3-doped materials is consistent with their similar microstructures. This work implies that MgSiN2 is an effective sintering aid for developing not only high thermal conductivity (>110 Wm−1K−1) but also high fracture toughness (>10 MPa m1/2) of Si3N4 ceramics.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2046 ◽  
Author(s):  
Yi Jing ◽  
Hongbing Yuan ◽  
Zisheng Lian

ZrB2–HfC ceramics have been fabricated using the liquid phase sintering technique at a sintering temperature as low as 1750 °C through the addition of Ni. The effects of HfC addition on the microstructure and mechanical properties of ZrB2–based ceramics have been investigated. These ceramics were composed of ZrB2, HfC, Ni, and a small amount of possible (Zr, Hf)B2 solid solution. Small HfC grains were distributed among ZrB2 grain boundaries. These small grains could improve the density of ZrB2–based ceramics and play a pinning role. With HfC content increasing from 10 wt % to 30 wt %, more HfC grains were distributed among ZrB2 grain boundaries, leading to weaker interface bonding among HfC grains; the relative density and Vickers hardness increased, and flexural strength and fracture toughness decreased. The weak interface bonding for 20 and 30 wt % HfC contents was the main cause of the decrease in both flexural strength and fracture toughness.


2010 ◽  
Vol 434-435 ◽  
pp. 173-177 ◽  
Author(s):  
Bao Xia Ma ◽  
Wen Bo Han ◽  
Xing Hong Zhang

Ternary ZrC-SiC-ZrB2 ceramic composites were prepared by hot pressing at 1900 °C for 60 min under a pressure of 30 MPa in argon. The influence of ZrB2 content on the microstructure and mechanical properties of ZrC-SiC-ZrB2 composites was investigated. Examination of SEM showed that the microstructure of the composites consisted of the equiaxed ZrB2, ZrC and SiC grains, and there was a slight tendency of reduction for grain size in ZrC with increasing ZrB2 content. The hardness increased considerably from 23.3 GPa for the ZS material to 26.4 GPa for the ZS20B material. Flexural strength was a strong function of ZrB2 content, increasing from 407 MPa without ZrB2 addition to 627 MPa when the ZrB2 content was 20vol.%. However, the addition of ZrB2 has little influence on the fracture toughness, ranging between 5.5 and 5.7 MPam1/2.


2012 ◽  
Vol 723 ◽  
pp. 233-237 ◽  
Author(s):  
Tong Chun Yang ◽  
Chuan Zhen Huang ◽  
Han Lian Liu ◽  
Bin Zou ◽  
Hong Tao Zhu ◽  
...  

TiB2-(W,Ti)C composites with (Ni,Mo) as sintering additive have been fabricated by hot-pressing technique, and the microstructure and mechanical properties of the composites have been investigated. (Ni,Mo) promotes grain growth of the composites. In the case of 7vol.% (Ni,Mo), the grain size decreases consistently with an increase in the content of (W,Ti)C. When the proper content of (W,Ti)C is added to TiB2 composites, the growth of matrix grains is inhibited and the mechanical properties of the composites are improved. The best mechanical properties of the composites are 1084.13MPa for three-point flexural strength, 7.80MPa•m 1/2 for fracture toughness and 17.92GPa for Vickers hardness.


2012 ◽  
Vol 727-728 ◽  
pp. 1085-1091
Author(s):  
José Vitor C. Souza ◽  
O.M.M. Silva ◽  
E.A. Raymundo ◽  
João Paulo Barros Machado

Si3N4based ceramics are widely researched because of their low density, high hardness, toughness and wear resistance. Post-sintering heat treatments can enhance their properties. Thus, the objective of the present paper was the development of a Si3N4based ceramic, suitable for structural applications, by sintering in nitrogen gas pressure, using AlN, Al2O3, and Y2O3as additives and post-sintering heat treatment. The green bodies were fabricated by uniaxial pressing at 80 MPa with subsequent isostatic pressing at 300 MPa. The samples were sintered at 1900°C for 1 h under N2gas pressure of 0.1 MPa. Post-sintering heat treatment was performed at 1500°C for 48 h under N2gas pressure of 1.0 MPa. From the results, it was observed that after post-sintering heat treatment there was a reduction of α-SiAlON phase and increase of β-Si3N4phase, with consequent changing in grain size, decrease of fracture toughness and increase of the Vickers hardness.


Materials ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1206
Author(s):  
Jiasuo Guan ◽  
Laifei Cheng ◽  
Mingxing Li

Si3N4-Fe3Si composites were prepared using Fe-Si3N4 as the source of Fe3Si by gas-pressure sintering. By adding different amounts of Fe-Si3N4 into the starting powders, Si3N4-Fe3Si composites with various Fe3Si phase contents were obtained. The microstructure and mechanical properties of the composites were investigated. With the increase of Fe-Si3N4 contents, the content and particle size of Fe3Si both increased. When more than 60 wt. % Fe-Si3N4 were added, the abnormal growth of Fe3Si particles occurred and oversized Fe3Si particles appeared, leading to non-uniform microstructures and worse mechanical properties of the composites. It has been found that Fe3Si particles could toughen the composites through particle pull-out, interface debonding, crack deflection, and particle bridging. Uniform microstructure and improved mechanical properties (flexural strength of 354 MPa and fracture toughness of 8.4 MPa·m1/2) can be achieved for FSN40.


2019 ◽  
Vol 54 (6) ◽  
pp. 765-772 ◽  
Author(s):  
Ajay Kumar Vemulapalli ◽  
Rama Murty Raju Penmetsa ◽  
Ramanaiah Nallu ◽  
Rajesh Siriyala

Hydroxyapatite is a very attractive material for artificial implants and human tissue restorations because they accelerate bone growth around the implant. The hydroxyapatite nanocomposites (HAp/TiO2) were produced by using high energy ball milling. X-ray diffraction studies revealed the formation of HAp and TiO2 composites. Cubic-like crystals with boundary morphologies were observed; it was also found that the grain size gradually increased with the increase in TiO2 content. It was found that the mechanical properties (hardness, Young's modulus, fracture toughness, flexural strength, and compression strength)of the composites significantly improved with the addition of TiO2, which was sintered at 1200℃. These properties were then also correlated with the microstructure of the composites. This paper investigates the effect of titania (TiO2 = 0, 5, 10, 15, 20, and 25 wt%) addition on the microstructure and mechanical properties of hydroxyapatite (Ca10(PO4)6(OH)2) nanocomposites.


2005 ◽  
Vol 287 ◽  
pp. 271-276
Author(s):  
Dong Soo Park ◽  
Byung Dong Hahn ◽  
D.-J. Baik

Sintered reaction bonded silicon nitride with aligned whisker seeds was prepared by tape casting silicon slurry with 5 wt% b-Si3N4 whisker seeds followed by nitridation and sintering. Three different sintering additives were used for the samples; 7 wt% Y2O3, 6 wt% Y2O3 + 1 wt% Al2O3 and 5 wt% Y2O3 + 2 wt% Al2O3. The sample with 5 wt% Y2O3 + 2 wt% Al2O3 showed the fastest a to b phase transformation after nitridation and the highest fracture toughness and flexural strength after gas pressure sintering among the samples. It also had finer microstructure than the other samples after sintering at 2248 K and at 2273 K. The finer microstructure was related to the faster phase transformation after nitridation, which resulted in the higher flexural strength.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040046
Author(s):  
Li Yin ◽  
Yuxin Wang ◽  
Songtao Jiang ◽  
Zhen He ◽  
Saifang Huang

In this work, a composite composed of [Formula: see text]-Sialon (Z[Formula: see text]=[Formula: see text]4) and ZrN has been fabricated by a two-step gas-pressure sintering method, and the effects of ZrN content and applied pressure on the phase behavior, densification and mechanical properties have been investigated. The phase behaviors were mainly dependent on the ZrN content and the applied pressure. The composites composed of [Formula: see text]-Sialon (Z[Formula: see text]=[Formula: see text]4), ZrN, 15R-Sialon (0.4 MPa) and 12H-Sialon (0.7 MPa) as major phases, with different intermediate phases depending on the ZrN content. It is revealed that with the two-step sintering technique, a higher applied gas pressure has a positive effect on mass loss, and significantly improved the mechanical properties. The addition of ZrN particles greatly helped the densification behavior, reduced the mass loss, and increased fracture toughness of the composites, but decreased hardness due to formation of intermediate phases and grain coarsening. The addition of ZrN increased the fracture toughness due to the toughening mechanisms of crack branching, crack deflection and crack bridging.


Sign in / Sign up

Export Citation Format

Share Document