Msx2 Plays a Central Role in Regulating Branching Morphogenesis During Mammary Development

2001 ◽  
Author(s):  
Yi-Hsin Liu
2015 ◽  
Vol 208 (3) ◽  
pp. 351-366 ◽  
Author(s):  
Kevin Roarty ◽  
Amy N. Shore ◽  
Chad J. Creighton ◽  
Jeffrey M. Rosen

Wnt signaling encompasses β-catenin–dependent and –independent networks. How receptor context provides Wnt specificity in vivo to assimilate multiple concurrent Wnt inputs throughout development remains unclear. Here, we identified a refined expression pattern of Wnt/receptor combinations associated with the Wnt/β-catenin–independent pathway in mammary epithelial subpopulations. Moreover, we elucidated the function of the alternative Wnt receptor Ror2 in mammary development and provided evidence for coordination of this pathway with Wnt/β-catenin–dependent signaling in the mammary epithelium. Lentiviral short hairpin RNA (shRNA)-mediated depletion of Ror2 in vivo increased branching and altered the differentiation of the mammary epithelium. Microarray analyses identified distinct gene level alterations within the epithelial compartments in the absence of Ror2, with marked changes observed in genes associated with the actin cytoskeleton. Modeling of branching morphogenesis in vitro defined specific defects in cytoskeletal dynamics accompanied by Rho pathway alterations downstream of Ror2 loss. The current study presents a model of Wnt signaling coordination in vivo and assigns an important role for Ror2 in mammary development.


1999 ◽  
Vol 211 (2) ◽  
pp. 238-254 ◽  
Author(s):  
Jimmie E. Fata ◽  
Kevin J. Leco ◽  
Roger A. Moorehead ◽  
David C. Martin ◽  
Rama Khokha

2021 ◽  
Vol 22 (6) ◽  
pp. 3162
Author(s):  
Erni Sulistiyani ◽  
James M. Brimson ◽  
Ajjima Chansaenroj ◽  
Ladawan Sariya ◽  
Ganokon Urkasemsin ◽  
...  

Antioxidant agents are promising pharmaceuticals to prevent salivary gland (SG) epithelial injury from radiotherapy and their associated irreversible dry mouth symptoms. Epigallocatechin-3-gallate (EGCG) is a well-known antioxidant that can exert growth or inhibitory biological effects in normal or pathological tissues leading to disease prevention. The effects of EGCG in the various SG epithelial compartments are poorly understood during homeostasis and upon radiation (IR) injury. This study aims to: (1) determine whether EGCG can support epithelial proliferation during homeostasis; and (2) investigate what epithelial cells are protected by EGCG from IR injury. Ex vivo mouse SG were treated with EGCG from 7.5–30 µg/mL for up to 72 h. Next, SG epithelial branching morphogenesis was evaluated by bright-field microscopy, immunofluorescence, and gene expression arrays. To establish IR injury models, linear accelerator (LINAC) technologies were utilized, and radiation doses optimized. EGCG epithelial effects in these injury models were assessed using light, confocal and electron microscopy, the Griess assay, immunohistochemistry, and gene arrays. SG pretreated with EGCG 7.5 µg/mL promoted epithelial proliferation and the development of pro-acinar buds and ducts in regular homeostasis. Furthermore, EGCG increased the populations of epithelial progenitors in buds and ducts and pro-acinar cells, most probably due to its observed antioxidant activity after IR injury, which prevented epithelial apoptosis. Future studies will assess the potential for nanocarriers to increase the oral bioavailability of EGCG.


PLoS ONE ◽  
2015 ◽  
Vol 10 (6) ◽  
pp. e0129895 ◽  
Author(s):  
Jane Q. Chen ◽  
Hidetoshi Mori ◽  
Robert D. Cardiff ◽  
Josephine F. Trott ◽  
Russell C. Hovey ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Buchmann ◽  
L. K. Engelbrecht ◽  
P. Fernandez ◽  
F. P. Hutterer ◽  
M. K. Raich ◽  
...  

AbstractEpithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation.


Sign in / Sign up

Export Citation Format

Share Document