Faculty Opinions recommendation of Regulation of epithelial branching morphogenesis and cancer cell growth of the prostate by Wnt signaling.

Author(s):  
Arthur Mercurio
PLoS ONE ◽  
2008 ◽  
Vol 3 (5) ◽  
pp. e2186 ◽  
Author(s):  
Bu-Er Wang ◽  
Xi-De Wang ◽  
James A. Ernst ◽  
Paul Polakis ◽  
Wei-Qiang Gao

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Shiyang Liu ◽  
Nathan Harmston ◽  
Trudy Lee Glaser ◽  
Yunka Wong ◽  
Zheng Zhong ◽  
...  

Abstract Background Wnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized. Methods We comprehensively mapped Wnt-regulated lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model and examined the response of lncRNAs to Wnt inhibition between in vivo and in vitro cancer models. We further annotated and characterized these Wnt-regulated lncRNAs using existing genomic classifications (using data from FANTOM5) in the context of Wnt signaling and inferred their role in cancer pathogenesis (using GWAS and expression data from the TCGA). To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation both in vivo and in vitro. Results We identified 3633 lncRNAs, of which 1503 were regulated by Wnt signaling in an orthotopic Wnt-addicted pancreatic cancer model. These lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. Our analysis suggested that Wnt signaling inhibition could influence the co-expression relationship of Wnt-regulated lncRNAs and their eQTL-linked protein-coding genes. Wnt-regulated lncRNAs were also implicated in specific gene networks involved in distinct biological processes that contribute to the pathogenesis of cancers. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1503) of the Wnt-regulated lncRNAs were found to modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1503) that had a functional effect on cancer cell growth. Conclusions Our study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling, and establishes a framework for systematic discovery of functional lncRNAs.


2011 ◽  
Vol 71 (1) ◽  
pp. 197-205 ◽  
Author(s):  
Jo Waaler ◽  
Ondrej Machon ◽  
Jens Peter von Kries ◽  
Steven Ray Wilson ◽  
Elsa Lundenes ◽  
...  

Biomedicines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 143
Author(s):  
Chun-Chun Chang ◽  
Sheng-Feng Pan ◽  
Min-Huang Wu ◽  
Chun-Tse Cheng ◽  
Yan-Rui Su ◽  
...  

The abnormal Wnt signaling pathway leads to a high expression of β-catenin, which causes several types of cancer, particularly colorectal cancer (CRC). The inhibition of tankyrase (TNKS) activity can reduce cancer cell growth, invasion, and resistance to treatment by blocking the Wnt signaling pathway. A pharmacophore search and pharmacophore docking were performed to identify potential TNKS inhibitors in the training databases. The weighted MM/PBSA binding free energy of the docking model was calculated to rank the databases. The reranked results indicated that 26.98% of TNKS inhibitors that were present in the top 5% of compounds in the database and near an ideal value ranked 28.57%. The National Cancer Institute database was selected for formal virtual screening, and 11 potential TNKS inhibitors were identified. An enzyme-based experiment was performed to demonstrate that of the 11 potential TNKS inhibitors, NSC295092 and NSC319963 had the most potential. Finally, Wnt pathway analysis was performed through a cell-based assay, which indicated that NSC319963 is the most likely TNKS inhibitor (pIC50 = 5.59). The antiproliferation assay demonstrated that NSC319963 can decrease colorectal cancer cell growth; therefore, the proposed method successfully identified a novel TNKS inhibitor that can alleviate CRC.


Cancers ◽  
2016 ◽  
Vol 8 (5) ◽  
pp. 49 ◽  
Author(s):  
Michael Bordonaro ◽  
Senji Shirasawa ◽  
Darina Lazarova

2020 ◽  
Author(s):  
Shiyang Liu ◽  
Nathan Harmston ◽  
Trudy Lee Glaser ◽  
Yunka Wong ◽  
Zheng Zhong ◽  
...  

AbstractBackgroundWnt signaling is an evolutionarily conserved developmental pathway that is frequently hyperactivated in cancer. While multiple protein-coding genes regulated by Wnt signaling are known, the functional lncRNAs regulated by Wnt signaling have not been systematically characterized.ResultsWe comprehensively mapped lncRNAs from an orthotopic Wnt-addicted pancreatic cancer model, identifying 3,633 lncRNAs, of which 1,503 were regulated by Wnt signaling. We found lncRNAs were much more sensitive to changes in Wnt signaling in xenografts than in cultured cells. To functionally validate Wnt-regulated lncRNAs, we performed CRISPRi screens to assess their role in cancer cell proliferation. Consistent with previous genome-wide lncRNA CRISPRi screens, around 1% (13/1,503) of the Wnt-regulated lncRNAs could modify cancer cell growth in vitro. This included CCAT1 and LINC00263, previously reported to regulate cancer growth. Using an in vivo CRISPRi screen, we doubled the discovery rate, identifying twice as many Wnt-regulated lncRNAs (25/1,503) that had a functional effect on cancer cell growth.ConclusionsOur study demonstrates the value of studying lncRNA functions in vivo, provides a valuable resource of lncRNAs regulated by Wnt signaling and establishes a framework for systematic discovery of functional lncRNAs.


Sign in / Sign up

Export Citation Format

Share Document