The Effect of Shot Peening Coverage on Residual Stress, Cold Work and Fatigue in a Ni-Cr-Mo Low Alloy Steel

Author(s):  
P. S. Prevey ◽  
J. T. Cammett
2011 ◽  
Vol 462-463 ◽  
pp. 1355-1360
Author(s):  
Omar Suliman Zaroog ◽  
Aidy Ali ◽  
Sahari B. Barkawi

It is important to account for residual stress relaxation phenomenon in the design of the component. Specimens of 2024-T351 aluminium alloy were used in this study. The specimens were shot peened under three different shot peening intensities. Cyclic tests for two load magnitudes were performed for 1, 2, 10, 1000 and 10000 cycles. Residual stresses, microhardness and the cold work percentage were measured at initial state and after each loading cycle for the three shot peening intensities and for the two loads. The study revealed that most of the drop in the residual stress, microhardness and cold work happened in the first cycle are dependent on the applied load.


2020 ◽  
Vol 7 (1) ◽  
pp. 016574
Author(s):  
Mingliang Qiao ◽  
Jing Hu ◽  
Kai Guo ◽  
Qingfeng Wang

Author(s):  
Hiroyuki Sakamoto ◽  
Takatoshi Hirota ◽  
Naoki Ogawa

Elastic-plastic finite element (FE) analysis is performed to determine the plastic behavior of the reactor pressure vessel (RPV) inner surface caused by rapid cooling during pressurized thermal shock (PTS) events. However, as the J-integral is not path-independent for elastic-plastic material in the unloading process, it is necessary to apply a suitable correction method using elastic material. In addition, it is also necessary to consider the effect of the welding residual stress appropriately. Therefore, we investigated the stress intensity factor derived from FE analysis based on a model consisting of elastic-plastic cladding and linear elastic low-alloy steel with subsequent plastic zone correction, since the stress level of low-alloy steel remains within the elastic region except the crack front during a PTS event. Furthermore, we examined whether the stress mapping method is applicable for reflecting the effect of welding residual stress in FE analysis, even though the plastic strain generated during welding is ignored.


Sign in / Sign up

Export Citation Format

Share Document